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STABILITY THEORY OF NONLINEAR OPERATIONAL DIFFERENTIAL

EQUATIONS IN HILBERT SPACES

by

Chia-Ven Pao
Department of Mathematics

University of Pittsburgh

Abstract

The object of this research is to establish some criteria for
the existence, uniqueness, stability, asymptotic stability and stability
region of a solution of the linear or nonlinear, time-invariant or time-
varving operational differential equations (i.e., equations of evolution)
in Banach spaces and in Hilbert spaces, from which criteria for the same
results regarding a solution of the corresponding type of partial or
ordinary differential equations can be deduced. In the linear case,
semi-scalar nroduct on a Banach space and linear semi-group theory are
used; in the nonlinear case, equivalent inner product on a Hilbert space

and the concept of nonlinear semi-group are introduced.



SUMMARY

The object of this dissertation is to establish some criteria
for the’existence, uniqueness, stability, asymptotic stability and
stability region of a solution of the linear or nonlinear, time-
invariant or time-varving operational differential equations {(i.e.,

equations of evolution) of the form

2O - Agorx(e) (t 2 0)
dt =
in Banach spaces and in Hilbert spaces, from which criteria for the
same results of a solution of the corresponding tvne of partial differ-
ential equations can he deduced. In the case of linear time-invariant
equations of evolution, linear semi-group theofy is used; and by the
introduction of an eauivalent semi-scalar product on a Banach space,
necessary and sufficient conditions on the linear operator A(t) = A for
the generation of a semi-groun in a real Banach space are obtained. Bv
using the semi-proun property, the existence, uniqueness, stability or
asymptotic stability of a strong solution can he ensured, In the case
of nonlinear time-invariant equations, the concept of nonlinear semi-
group is introduced. Based on some properties of a monotone operator
(or, a dissipative operator in the terminology of this dissertation),
necessary and sufficient conditions on the nonlinear operator A(t) = A
for the-generation of a nonlinear semi-group in a complex Hilbert space
are g§tablished, from which the existence, uniqueness and stability or
asymptotic stability of a weak solution are guaranteed by the nonlinear
semi-group property. The introduction of an equivalent inner product

in a complex Hilbert space makes it possible to develop a stability theory




in terms of a Lyapunov functional which is defined through a defining
sesquilinear functional. It is shown that such a functional defines an
equivalent inner product and that the existence and stability propertv

of a weak solution are invariant under eaquivalent inner products. 1In

case of a Banach space, the defining sesquilinear functional is replaced
by an equivalent semi-scalar product. The investigation of the existence,
uniqueness and stability of weak solutions is extended to nonlinear time-
varying operational differential equations. Under some additional reg-
trictions on the nonlinear operator A(t) which is time-denendent, criteria
for the existence, uniqueness, stability or asvmptotic stability of a weak
solution for the general nonlinear time-varying equation of evolution in

a complex Hilbert space are obtained., Several special types of nonlinear
equations which are more suitahle for a class of nonlinear partial differ-
ential equations are deduced with particular attention on the class of

nonlinear nonstationary equations of the form

dx(t)
dt

= Ax(t) + £(t,x(t)) (t > 0)

where A is a linear or nonlinear time-independent operator mapning part
of a real Hilbert space H into itself and f is a given (in general
nonlinear) function defined on R+ x H into H. Apolications are given
to a class of second order n-dimensional parabolic-elliptic tvne of

partial differential equations with a detailed descrintion of the formu-

lation of an abstract operator having the desired property from a partial

differential operator.



I., INTRODUCTION

In the year of 1892, A. M. Lyapunov [161* published in Russian
his famous memoire on the stability of motion which originally received
very iittle attention. About forty years later, the work in Lyapunov
stability theory was resumed by some Soviet mathematicians and since
been widely used as a mathematical tool in the investigation of linear
and nonlinear stability problems governed by ordinary differenﬁial equa-
tions. The "direct method" of Lyapunov consists of a means for answering
the question of stability of differential equations from the given form
of the equations, including the boundary conditions, without explicit
knowledge of the solutions. The central problem of the direct method
in the investigation of stability of ordinary differential equations is
the construction of a ''Lyapunov functiOp" v(x) having the property that
v(x) 2 0 for x in a finite dimensional space and the derivative of v(x)
along solutions of the given equation is negative. The development of
the Lyapunov method has been moved toward the investigation of partial
differential equations in recent years. This advance seems to be natural
since many physical problems can be best described or must be represented
by partial differential equations. It is also natural that the idea of
constructing a Lyapunov function in finite dimensional spaces is extended
to.the construction of a "Lyapunov functional” in infinite dimensional
§paces. This extension leads to the use of function spaces on which a
topology can be defined. A first step toward applying the Lyapunov direct

method to partial differential equations Wwas the study of a denumerably

*Numbers in brackets designate references at the end of this dissertation.




infinite system of ordinary differential equations (e.g., see Massera [17D).
A general stability theory by using a scalar functional was established

by Zubov [24] who considered equations of the form

LX) - f£(x, u, . (1-1)

However, the existence of solutions of (I-1) was proved only for the case
when f is linear in 3u/9X and for the general form of (I-1), the exist-

ence of solutions was assumed. Moreover, the requirement that the system

of partial differential equations define a dvnamical system (i.e.,, the
solutions possess the group property) excludes a large class of differen-
tial equations whose solutions possess only the semi-group propertv. Since
the stability problem of partial differential equations occurs in manv
fields of science such as reactor physies, control process, fluid mechanics,
chemical process, etc. the study of stability behavior of solutions to
partial differential equations has been accelerated by engineers, physicists
and mathematicians in recent years as can be seen from a literature survev
made by Wang [227. However, most of the worl listed in [22] deal with a
specific partial differential operator, and in some of them the existence

of a solution is either assumed or not mentioned, On the other hand, there
are many works in the area of partial differential equations and in particu-
lar those works on operational differential equations (i.e., equations of
evolution) in which only the existence and uniqueness are discussed, It
should be mentioned that in some Russian literature, the stability prob&em
of semi-linear operational differential equations has been investipated. °
Some earlier literature by Khalilov and Domshlak are described in a survey
book edited by Gamkrelidze [7) in which numerous references concerning

operational differential equations are also given, In the studv of periodic



solutions of the semi-linear operational differential equations of the form

-‘%—é—ﬂ = Ax(t) + F(t, u, \) (1-2)

Taam [20] also investigated the stability properties of solutions to

+

(I-2).* He assumed A either as a bounded linear operator or as the
infinitesimal generator of a semi-group and established criteria for the

existence and the asymptotic stability of a periodic solution.

A. Recent Developments on Linear Equations

The difficultyof the direct extension from ordinary differential
equations into partial differential equations by the Lyapunov direct
method lies in the fact that the existence of a solution to a given
partial differential equation must first be established because to
ensure the stability of a solution the derivative of the "Lyvapunov func-
tional" is taken along the solutions of the given equation. More recently,
in the study of stability problem of a system of linear partial differ-
ential equations, Buis [3] applied the semi-group and group theory to

operational differential equations of the form

-d—’(;ﬁ—tl = Ax(t) (1-3)

where A, which may be considered as an extensipn of a partial differential
operator, is a linear operator with domain and range both in a real Hilbert
space, By using semi-group or group theory, the solutions of (I-3) can

be represented by a semi-group or a group in the sense that if a solution
o% (I-3) with initial condition xeD(A) (the domain of A) is denoted by
¢(t,x), then under suitable conditions the operator A generates a semi~
growp {5 t 2 0} or a group {T 3 = > <t < w} of bounded linear opera-
tors such that the solution of (I-3) exists and is given by

o(t,x) = T x (tz2 O




for any xeD(A). Thus the stability property of solutions to (I-3) is
related to the property of the semi-group or group generated by A. ‘
Based on the known properties of the semi~group or group, Buis estaﬁlished
sufficient conditions for A to generate a negative semi-group (of class
Co) and necessary and sufficient conditions for A to generate a negative
group (see definitions III-9 and III-10) so that a solution of (I-3)
exists and is asymptotically stable. All these conditions refer to the
existence of a Lyapunov functional which is defined through a symmetric
bilinear form. Following the same idea as in [3], Vogt, Buis and Eisen
[21] considered a closed linear operator from a Banach space into itself
and established the necessary and sufficient conditions for A to generate
a negative group by using a semi-scalar product, Their results are, in

.

fact, an extension of [3] for the case of a group from a Hilbert space

into a Banach space.

B, Nonlinear Operational Differential Equations

In recent years, most of the investigations of differential equa-
tions (both ordinary and partial) are centered on nonlinear equations.
This is perhaps due to the fact that many physical problems must be formu-
lated by nonlinear differential equations as well as that nonlinear equa-
tions possess many properties of theoretical interest. 1In the case of
operational differential equations, many results on the existence and
uniqueness of semi-linear equations of the form similar to (I-2) have

been established (e.g., see Browder [1], Kato [9]). Just recently (1967),

Komura [13] studied an equation of evolution of the form

9—:{-9- = Ax(t) (t > 0) (1-4)



where A is, in general, a nonlinear operator with domain and range

in a Hilbert space H and x(t) is a vector-valued function defined on
Rt = [O; ©) to He In his work, a general theory for nonlinear semi-
groups of contraction operators in a Hilbert space is developed. How-
ever, Komura considered A of (I-4) as a multi-valued operator which
makes his theory rather complicated. Motivated by the work in [13],
Kato [11] refined and extended considerably Komura's results by con-
sidering a single-valued operator A(t) with domain and range both in a
Banach space X where the operator A of (I-4) is also extended to A(t)
which depends on the variable t. Following [13] and [11], Browder [2]
further extended (in some sense), among others, Kato's results by includ-
ing an additional function f(t,x) on the right of (I-4) with the sim—
plification that the underlying space X is a real Banach space. All
the above works are mainly concerned with the existence and uniqueness

of solutions,

C. Area for Extension and New Development

It is seen in [3] that necessary and sufficient conditions for
the operator A in (I-3) to generate a negative group (of class Co)’ and
that sufficient conditions for A to generate a semi-group were established
by assuming the existence of a Lyapunov functional, Conversely, if A
generétes an equibounded or negative semi-group, is it possible to comnstruct
a LYapunov functional as in the case for a group? Since the extension in
[21] to a real Banach space of the above mentioned results in [3] was
accomplished only for the case of a group, the investigation for a similar

extension for a semi-group is also necessary. On the other hand, the class




of nonlinear differential equations, either time-invariant or time-
varying, are more important from both the applications and the theoretical
points of view, All of these need further investigation. The intro-
duction of the concept of nonlinear semi-groups opens a new road to the
problem of nonlinear operational differential equations. The importance

of the study of the stability problem by using the semi-group or non-
linear semi-group theory lies in the fact that the important problem of
establishing the existence of a solution is an intrinsic part of the theory

developed.



II. STATEMENT OF PROBLEM

Many systems of partial differential equations can be

¢

written in the form of

Bult,X)  _ 1ie,x) xeQ, t

Y 0 (II-1)

where u(t,Xx) is an m-vector function and L is a matrix whose elements
are linear or nonlinear partial differential operators defined on a
subset  of an n~dimensional Euclidean space R". In more general
cases, the coefficients of the elements in L are both space and time
dependent (linear or nonlinear). To specify solutions to the equation
(II-1), a set of boundary conditions are given which can be put into
the form

B u(t,x') =0 x'edq, (11-2)
where B is a matrix whose elements are linear or nonlinear partial
differential operators and 3Q is the boundary of @, 1In addition, an
initial condition is given as

u(0,x) = uo(x) (I1-3)

where uo(x) is a given space-dependent function. If all the elements
of L and B are linear differential operators, (II-1l) and (II-2) can be

reduced to the form

dgtt) = Ax(t) (11-4)

where x(t) is a vector-valued function (in the sense of a linear function
spaéé) defined on R' to a suitable Banach space or Hilbert space X and A
is’a (in general unbounded) linear operator from part of X to X; if ome
or more elements of L or B is nonlinear, then A is a nonlinear operator
from part of X to X; in case one or more elements of L or B is space-

time dependent, the systems (II-1) and (II-2) are reduced to the form

10




(I1I-4) with A replaced by A(t) which is a linear or nonlinear operator
depending on t. In all cases, (II-1) and (II-2) can be considered as
special cases of abstract operational differential equations which can

be parabolic equations and certain hyperbolic equations,etc., The object

of this research is to establish some stability criteria which intrinsically
include the existence and uniqueness of solutions for the types of differ-
ential equations described above in an abstract setting, from which the be-
haviors of the corresponding type of partial differential equations can be
deduced. The first two sections in the following introduce the tyvpes of
operational differential equatiomns (i.e., equations of evolution) to be
investigated and the final section summarizes the results obtained in this

investigation.

A. Linear Time-invariant Differential Equations

It has been seen in Chapter I that by using the semi-group or
group theory, a Lyapunov stability theory for the linear operational differ-
ential equations of the form (II-4) in a real Hilbert space was established
in [3]. There, a Lyapunov functional is defined through a symmettic bilinear
functional. The main results concerning the equation of the form (II-4) is
that if the domain of A is denmse in H and the range of (I-A) is H (I is the
identity operator) then A is the infinitesimal generator of a negative semi=
group (of class C,) if there exists a Lyapunov functional satisfying certain
properties and it is the infinitesimal generator of a negative group (of class
Co) if and only if there exists a Lyapunov functional satisfying some addi-
tional properties. Unlike a group, however, a semi-group lacks the property
of having a lower bound (in some sense) which makes the conmstruction of a

Lyapunov functional through a bilinear functional rather difficult,

11



Because of this difficulty the results given in [3] for the case
of a semi-group do not parallel the case of a group, that is, the necessary
condition for the existence of a Lyapunov functional having the desired
property is not shown. To overcome this, an equivalent semi-scalar pro-
duct is introduced., If the operator A in (II-&) is the infinitesimal
generator of an equibognded or negative semi-group, a Lyapunov functional
can be constructed through an equivalent semi-scalar product which gives
the converse statement in [3] as described above. Moreover, by using the
same idea in defining a Lyapunov functional, necessary and sufficient con-
ditions for A to generate an equibounded or negative semi-group in the
case of a real Banach space can also be established. This later extension
to a Banach space is in analogy to the one in [21] for the case of a group.
It is seen that with these additional extensions, the stability study of
linear operational differential equation (II-4) by using semi-group or
group theory would be, in a sense, completed (there is no difficulty in

extending the above results to complex spaces).

B, Development of Nonlinear Operational Differential Equations

Owing to the importance of nonlinear differential equations in
both pure theory and its applications, the investigation of the nonlinear
operational differential equations is the main concern of this disserta-
tion, The first stage in the development of nonlinear operational differ-
ential equations is to study the equations of evolution of the form

420 . ax(r) (t > 0) (11-5)

where x(t) is a vector-valued function defined on Rt = [0, =) to a Hilbert
space H (in general, H is a complex Hilbert space) and A is a nonlinear

operator (which is independent of t) with domain and range both in H,

12




Based on the results obtained by Kato in [11] in which the operator (-A)
is assumed to be monotone (i.e., A is dissipative in the terminology of
this dissertation) and by using the nonlinear semi-group property, a
stability theory as well as the extence and uniqueness theory for the
equation (II-5) can be developed. Moreover, by introducing an equivalent
inner product, the same results hold if the operator A is dissipative with
respect to this equivalent inner product. This fact motivates the con-
struction of a Lyapunov functional through a sesquilinear functional which
under some additional conditions defines an equivalent inner product. Thus
a stability criteria can be established through the construction of a
Lyapunov functional.

As a special case of (II-5), the semi-linear equations of eyolu—
tion of the form

) Lpx(e) + £Gx(®) (£ 2 0) (11-6)

is discussed to some extent where A0 is an unbounded linear operator with
domain and range both in a real Hilbert space H and f is a (nonlinear) func-
tion defined on H into H. The purpose of doing this is that by utilizing
the results established on the linear equation (II-4) (i.e., for f(x) = O
in (II-6)), the existence, uniqueness and stability or asymptotic stability
of a solution to (II-6) can be ensured by imposing some additional conditions
on the function f. Notice that (II-6) is a direct extension of the linear
equation (II-4).

In case the elements of the partial differential operator L in
(II-1) or the elements of B in the boundary conditions (II-2) possess
time~dependent coefficients, equation (II-5) is not suitable as an abstract

extension for this type of partial differential equation. The second stage

13



in the development is to extend equation (II-5) to a more general type

of operational differential equation of the form

48 - A(e)x(e) (t 2 0) (11-7)

where A(t) is, for each t > 0, a nonlinear operator with domain and
range both contained in a Hilbert space H. It is seen that this exten-
sion is a further advance in the generalization of nonlinear equations
of evolution. In parallel to the case of the equation (II-4), criteria
for the existence, uniqueness, stability and, in particular, asymptotic
stability of a solution as well as the stability region are established,
The concept of equivalent inner product is similarly introduced, and it
is shown that stability property remains unchanged under equivalent inner
product,

In the case of semi-linear equations of the form

dx(t) _

Tt A (B)x(t) + £(t,x(t)) (t > 0) (11-8)

where Ao(t) is, for each t > 0, a linear unbounded operator with domain

and range both in H and f is a (nonlinear) function defined on R*x H into
H, stability criteria are deduced from the results for the general equation
(II-7). TFor the sake of applications as well as theoretical interest in
certain partial differential equations which occur often in physical prob-
lems, some special equations of (II-7) are included. These equations can

be written in the general form

O o px(t) + £(6,x(1)) (£ 2 0) (11-9)
where A, which is independent of t, is a linear or nonlinear operator
with domain and range both in a real Hilbert space H and f is a (nonlinear)

function defined on R¥x H into H. The idea for considering equations of

the form (II-9) is to transform and to simplify the conditions imposed on

14




the general operator A(t) into the conditions on A and on f so that
the existence, uniqueness and stability or asymptotic stability of a
solution as well as the stability region can be guaranteed, In case
A is linear and is the infinitesimal generator of a semi-group of
class C, or is a self-adjoint operator, the results are particularly
suitable for applications to certain partial differential equationms.
When A is a bounded operator on H into H, (II-9) can be put into the

form

——)'dfft = £(t,x(t)) (t 2 0) (11-10)
uo
which is, in fact, an ordinary differential equation. Criteria for

the existence and stability of a solution are also given for this case.

C. Summary of Results and Contributions to the Probiem

The object of this research is to establish a stability theory
so that a solution of a given operational differential equation (i.e.,
equation of evolution) not only exists and is unique but also is stable
or asymptotically stable. This given operational differential equation
is, in general, an abstract generalization of a class of partial differ-
ential equations such as heat conduction equations and wave equations etc,.
The contribution of this dissertation is the establishment of criteria
for the existence, uniqueness, stability, asymptotic stability and stab-
ility region of a solution on several types of nonlinear (including
linear) operational differential equations. This contribution can be
stated as four stages which are discussed in chapters 1V, V, VI and
VII respectively. The results obtained in these chapters are summarized

as follows:

15



(a) In chapter IV, the central idea is to show the existence
of a Lyapunov functional and to show the necessary and sufficient
conditions for the operator A to generate an equibounded or nepative
semi-group in a Banach space from which the existence and stability or
asymptotic stability of a solution are ensured. This is done in
theorems 1IV-7, IV-8, IV-11, IV-12 and IV-13,

(b) The central idea in chapter V is to establish a stability
theory for nonlinear operational differential equations by extending the
theory of linear semi-groups to nonlinear semi-groups with the hope that
this theory can be applied to some nonlinear partial differential equations.
Results on general nonlinear equations are given in theorems V-2 through
V-9 and on semi~linear equations are given in theorems V-11, V-12, V-15,
V-16 and V-17.

(c) The object in chapter VI is to extend the stabilitv theory
for time-invariant nonlinear equations in chapter V to time-varying
nonlinear equations with the hope that this theory might be used for a
larger class of non-stationary partial differential equations. Parti-
cular attention has been given to several special cases‘which are easier
to apply for certain partial differential equations. Results on general
nonlinear equations are given in theorems VI-2 through VI-5, those on
nonlinear nonstationary equations are given in theorems VI-6 and VI-7
and those on semi-linear equations are given in theorems VI-8, VI-9,
VI-13, VI-14 and VI-15.

(d) Finally, the applications of the results developed for
operational differential equations to partial differential equations
are given in chapter VII in which stability criteria for a class of
parabolic-elliptic partial differential equations are established and

are given in theorems VII-2, VII-4 and VII-6.

16




It is seen from this summary that the results of this disser-
tation cover several types of differential equations, and to the
knowledge of this author, most of the above results on the part of
stabiiity theory have not been previously shown., It is thought that
these results contribute to the stability theory of operational differ-

ential equations as well as of partial differential equations.,
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ITI., A PRELIMINARY ON FUNCTIONAL ANALYSIS

Because of the importance of functional analysis in the study
of operational differential equations (i.e., equations of evolution),
it is desirable to give some of the basic definitions and properties
equations. The following sections give an outline of some of the
necessary topics. Proofs and further details may be found in most
standard books on this subject (for example, references [5], [8], [10],
(12] and [23]), in particular, most of the materials in this chapter can

be found in [23].

A. Banach and Hilbert Spaces
A set X is called a linear space over a field K if the following
conditions are satisfied:
(i) X is an Abelian group (written additively);
(i1) A scalar multiplication is defined: to every element
x € X and each @ ¢ K there is associated an element of X, denoted by
a X, such that
a(x+y) = ax +ay (@, K3 x,y € X),
@tB)x =ax +Bx (a,B € K; x € X),
@B)x = o(Bx) (¢,B e Ky xe X),
lex = x (1 is the unit element of the field K).
Let X be a linear space over the field of real or complex numbers. If
for every x € X, there is associated a real number ||x||, the norm of

the vector x, such that for any ae K and any x,y € X
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(1) |lx|| 20, and [[x]|| = 0 if and only if x = 0,
@) ety |t g Hxll =+ Tyll

1i1)  oxl| = lel Ix|].

Then the linear space X together with the norm | | is called a normed

linear space and is denoted by (X, | ‘) or simply by X. A sequence

{xn} in a normed linear space X is called a Cauchy sequence if for any

€ > 0, there exists an integer N=N(e) > 0 such that ||xm—xn|| < ¢ for
all m,n > N. If every Cauchy sequence in X converges to an element x € X,
the space is said to be a complete normed linear space or a Banach space

(or simply a B-space). The convergence is said to be a strong convergence

{or norm convergence) and is designated by lim x »x as n - = or simply by
/ n

X, > X X is said to be a real or a complex Banach space according to
whether the field K is the real or complex numbers. A complex linear
space 1s called a complex inner product space (or a pre-Hilbert space)
if there is defined on X x X a complex-valued function (x,y), called the
inner product of x and y, with the following properties:

(1) (xty,z) = (x,z) + (y,2)

(1i1) (x,y) = (y,x) (the bar denoting complex conjugate)

(iii) (ex,y) =a (x,y)

(iv)  (x,x%) > 0, and (x,x) = 0 if and only if x = O,
A real linear space i1s called a real inmer product space if the properties
(i)-(iv) are satisfied except that (ii) is replaced by (x,y) = (yyx). By
defining |lx||=(x,x)1/2, an inner product space is a normed linear space
and the norm is said to be induced by the inner product (+s+). The con-

verse is, in general, not true. However, if the norm in a normed linear
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space X (real or complex) satisfies the parallelogram law:

ety |12+ eyl 12 = 20 x] 12 1112wy e x

then an inner product can be defined so that X is an inner product
space. If an inner product space H (real or complex) is complete with
respect to the norm induced by the inner product (ss:), it is called a
Hilbert space or an H-space and is denoted by (H, (¢s+)) or simply by H.
H is called a real or complex Hilbert space if K is the field of real
or complex numbers respectively., A Hilbert space is a special Banach
space., By the properties of (i), (ii), (iii) of an inner product, it
is seen that an inner product is bilinear for a real Hilbert space and is
sesquilinear for a complex Hilbert space. The sesquilinearity means
that:

(a;x + a,y,2)= ay(x,2) +a,(y,2), ©1,0, €K, x,v,2¢H

(x,Bly + 822) = El(x,y) + Ez(x,z) (Bl,B2 e K, x,vy,z € H),

If El and 52 in the above equality are replaced by Bl and 82 respectively,
the inner product is said to be bilinear.

Examples of Banach space and Hilbert space:

@D) (Qp), 1 <p < = The set of all sequences x = (xl’XZ"“)

[~}

of complex numbers such that Z Ixilp < » constitutes a normed linear
1=1 &
space (2P) by the norm ||x|]| = () |xi|p)l/p. (¢P) is a Banach space;
i=1

in particular 22 is a Hilbert space with the inner product defined by
(x,y) = Z K, Vqe

121 i'i

(2) Lp(Q), 1 <p < = The set of all real valued (or complex-

valued) measurable functions f(x) defined a.e. (almost everywhere) on {,

where Q@ is an open subset of R", such that |x(s) P is Lebesque integrable
’
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over {I constitutes a normed linear space LP(Q); it is a linear space by
(f+g) (x) = £(x) + g(x) and (af) (x) = af(x)

and the norm is defined by

|[X|| = ( é lf(x)|de)l/p (dx=dx1dx2---dxn).

LP(Q) is a Banach space whose elements are the classes of equivalent
I
ptl-power integrable functions. In particular, LZ(Q) is a Hilbert space

with the inner product defined by

(f,8) = [£(x) g(x) dx.
Q

Let X be a normed linear space. A point x £ X is said to be a
limit point of a set D=X if there exists a sequence of distinct elements
{xn}¢=D such that X, > xasn >, The closure of a set D, denoted by 5,
is the set comprised of D and all the limit points of D. A set D is said
to be closed if D = D and is said to be dense in X if D = X. Hence if

D is closed and dense in X then D = X,

Definition ITI-1, Let X; = (X, [

X is a linear space. The two norms |

)9 X2 = (X, |

|2) where

and |

[1 ]2 are said to be

equivalent if there exist real numbers 6, y with 0 < §

(LY

Y < = such

that
6 ||x||2 h ||x|]1 gy ||X!|2 for all x ¢ X.
Thus, if X1 is a Banach space so is X2.

Definition III-2. A normed linear space is uniformly convex if

for any € > 0, there exists a §

§(e) > 0 such that ||x|| <1, ||y]] <1

and l|x—y|l > € implies |]x+y||

A

2(1-8).
A Hilbert space is uniformlv convex, for by the parallelogram
law if ||X|’ g ||y[| < 1 and I!x—yl] > ¢ then

2 2
[ty |12 = 2] 2] 1% + 2[19]1% = |]x=y|]? < 4=e

which implies that ||x+y|| < 2(1-8) for some § = 8(e) > 0.
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B. Linear and Nonlinear Operators
Let X and Y be linear spaces on the same field of scalars K.

Let A be an operator (or function or mapping) which maps part of X

into Y. The domain of A, denoted by D(A), is the set of all x € X

such that there exists a y ¢ Y for which Ax=y. The range of A, denoted
by R(A), is the set {Ax; x € D(A)}. The null space (or kernel) of A is
N(A) = {x; Ax = 0}, 1If D(Al)c D(Ap) and Agx = Ayx for all x € D(Al),
then A2 is called an extension of A1 or A; is called a restriction of
Ay and this is denoted by A;<=A,. If D(Ay) = D(Az) and Ajx = A)x for

all x € D(A,), then A, = A,, The operator A is called one-to-omne if

1) 1

distinct elements in V(A) are mapped into distinct elements of R(A)
and in this case, A is said to have an inverse and is denoted by A—l.
An operator A with domain D(A) a linear subspace of X and range R(A)
in Y is called linear if for all x,y € D(A) and all ¢,B € K,

A(ax + By) = OAX + BAy, and is called nonlinear if it is not linear.

A linear operator A is one-to-one if and only if N(A) = {0}.

If X and Y are normed linear spaces and T is a linear operator
with P(T)< X and range R(T)e Y, the following statements are equivalent:
(a) T is continuous on D(T), (b) T is bounded, i.e., there exists a
number M > O such that for all x € D(T), ||Tx]] < M| |x|| (note that the
two norms of the inequality are, in general, not the same)., If T is
bounded, the norm of T is defined by:

[IT)] = sup(|{Tx|]5 [lx]] 2 1, x e V(D).
With this norm, the space of all bounded linear operators with domain
X and range in Y denoted by L(X,Y) is a normed linear space if we

define addition of operators and multiplication of operators by scalars
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in the natural way, namely

(T+S)x = TxtSx. (aT)x = alx 7,8 € L(X,Y) and x € X.
If, in addition, Y is a Banach space, so is L(X,Y).

Let X, Y be normed linear spaces on the same scalar field.
Then the product space X x Y is a normed linear space of all ordered
pairs {x,y} x € X, y € Y with addition and scalar multiplication defined
by
{xl,yl} + {xz,yz} = {x1 + X5, ¥y * y2}
a{x,y} = {ax, ay}
and with norm given by
6y = lxl 12+ 1152,

If X and Y are Banach spaces, so is X x Y. If T is a linear operator
with U(T)e X and R(T)e Y, the graph of T, G(T), is the set ({x,Tx};
x € V(T)). Since T is linear, G(T) is a subspace of X x Y. A linear
operator T is said to be closedin X if the graph G(T) of T is closed
in X x Y. A useful criterion to test whether a linear operator is closed
is the following: A linear operator T is closed if and only if X € (1),
X, X, Txn + y imply x € D(T) and Tx = y. The above criterion is
sometimes used as the definition of a closed operator. If T is closed
then the inverse T-l, if it exists, is closed. It is to be noted that
a continuous (or bounded) linear operator need not be closed and a closed
operator may be unbounded. However, if T is continuous and Y is a Banach
space, T has a unique extension T to D(T) such that ||T|| = ||T]| and T
is closed; if in addition, U(T) is dense in a Banach space X, then T ¢ L(X,Y).
The following theorem is known as the Banach Closed Graph Theorem.

Theorem ITI-]l, A closed linear operator T defined on a Banach space

X into a Banach space Y is continuous.
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A linear operator T is said to be closable if there exists a

linear extension of T which is closed in X, When T is closable, there

is a closed operator T with G(T) = G(T); T is called the closure of T
and is the smallest closed extension of T, in the sense that any closed
extension of T is also an extension of T. A linear operator T is closable
if and only if x € (), x> 0 and Tx ~y imply that y=0. In such
cases, the closure T of T can be defined as follows: x € D(T) if and

lim

only if there exists a sequence {x_}< D(T) such that x_-+x and Tx =1y
n n n>e n

exists; and we define Tx = y. It can be shown that y is uniquely defined
by x and T is closed. Let X and Y be normed linear spaces on the same
scalar field and T be a one-to-one operator with D(T)e X and R(T)< Y.

The inverse of T is the map from R(T) into X given by T_l(Tx) = x, If

T is linear, then 171 is linear with domain R(T) and range D(T). 71

exists and is continuous if and only 1if there exists an m > O such that

||Tx] | > m||x|] for x € V(T). If this is the case, ||T_l|| <

I A
3
H

is closed if and only if T is closed.

Definition III-3., Let H = (H,(¢»+)) be a Hilbert space and S

be an operator with domain dense in H and range in H. The adjoint
operator of S, denoted by S*, is defined as follows: y £ H is in the
domain of S* if and only if there exists a y* € H such that

(8x,¥) = (x,v*) for all x € D(S)
and we define S*y = y*, S* exists if and only if U(S) is demnse in H
and in this case, S* is a closed linear operator, S is called symmetric
if S 8*, i,e., S* is an extension of S, and is called self-adjoint if
S=S*, Thus, a self-adjoint operator is closed. S is said to be positive
definite if there exists a § > 0 such that

(Sx,%) 2 6!]x||2 for all x e D(S).

24




Let X and Y be normed linear spaces. Suppose T is a linear
operator with domain X and range in Y. T is said to be completely
continuous (or compact) if, for each bounded sequence {xn} in X,
the sequence {Txn} contains a subsequence converging to some limit
in Y. Compact operators possess many interesting properties (see, e.g.,
[23]). Since these properties are not needed in the present dis-

cussion of stability analysis we shall not state them here.

C. Linear Functionals, Conjugate Spaces and Weak Convergence
A numerical function f(x) defined on a normed linear space X
is called a functional, A functional is said to be linear if for any

X,y € X and a,B8 € K (real or complex number field)

flax + By) = af(x) + Bf(y);

and it is said to be continuous if for anv ¢ > 0 there exists a 6§ > 0
such that

||x—y!| < § implies lf(x)—f(v)| < g,
f is said to be bounded if there exists a constant M such that

| £(x) | < M||x|| for all x e X.

The following statements are equivalent: (a) f is continuous at any
fixed element X € X; (b) f is continuous on X; (c) f is uniformly
continuous on X; (d) f is bounded on X.

Let X,Y be normed linear spaces on the same scalar field of
real or complex numbers and let L(X,Y) be the class of all bounded
linear operators on X to Y. If Y is the real or complex number field
topologized in the usual way (i.e., the absolute value |a[ is taken as

the norm of a in Y), L(X,Y) is called the conjugate space (or dual space
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or adjoint space) of X and is denoted by X*. Thus X* is the set of
all continuous linear functionals on X. The pairing between any
elements x of X and f of X* is denoted by f(x) or by <x,f>, If we

define the norm of f € X* by

[Fel] =328 oy 1260

then X* is a Banach space. Note that X is not necessarily a Banach
space. For a given normed linear space X, the existence of a non-
trivil continuous linear functional on X can be ensured by the Hahn-
Banach extension theorem which is stated as follows for the case of
a normed linear space.

Theorem I1I-2 (Hahn-Banach theorem). Let X be a normed linear

space, M a linear subspace of X and f a continuous linear functional
defined on M. Then there exists a continuous linear functional F
defined on X such that F is an extension of f (i.e., F(xj = f£(x) for
all x € M) with ||F|| = {]£]].
A direct consequence of the Hahn-Banach theorem is the following:

Theorem III-3, Let X be a normed linear space and x_ # 0 be any

element of X. Then there exists a continuous linear functional f on X

2
such that f(xo) = ||xo|| and ||£]|]| = ‘Ixo| .
Corollary. If f(x) = 0 for every f € X* then x = 0. In parti-
cular, if f(x) = £(y) for every f € X* then x = y.
In case X is a Hilbert space, X* can be identified with X as can

be seen from the Riesz representation theorem.

Theorem I11-4 (Riesz representation theorem). For any linear

functional f on a Hilbert space H = (H, (+»+)), there exists an element
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Ve € H, uniquely determined by the functional f, such that
f(x) = (x,yf) for every x € H.

Moreover, ||f|| = |lyf|].

Corollary. Let H be a Hilbert space. Then the totality
of all bounded linear functionals H* on H constitutes also a Hilbert
space, and there is a norm-preserving, one-to-one correspondence
f Ve between H* and H.

It should be remarked here that by the correspondence in the
above corollary, H* may be identified with H as an abstract set; but
it is not allowed to identify, by this correspondence, H* with H as

linear spaces, since the correspondence f <> y_ is conjugate linear:

f
(@ f) +a,f,) < (olefl + Ezyfz)

where a;, o, are complex numbers. However if we define the space H*
to be the set of all bounded semi-linear forms on H (i.e., by defining
(f1 + f2) (x) = fl(x) + fz(x) and (af)x = af(x) for any x ¢ H, f ¢ H*
and a € K, the complex field) then H can be identified with H* not
only as an abstract set but also as a linear space.

Let X be a normed linear space and X* its conjugate space.
The conjugate space of X*, denote by X**, is called the second con-
jugate (or second dual or bidual) of X. Obviously, X** is a Banach

space, It can be shown that each X, € X defines a continuous linear

]

functional fo(x*) on X* by fo(x*) <xo,x*>. The mapping

x +f = Jx
o] [e) (o]
of X into X** satisfies the conditions

J(xl + xz) = Jx; + Jx,, J(ax) = aJ(x), and ||Jx||=||x]].

The mapping J is called the canonical mapping of X into X#*%,
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Definition III-4. A normed linear space X is said to be

reflexive if X may be identified with its second dual X** by the
correspondence x «+ Jx above,

In general, a Banach space X can be identified with only a
subspace of its second dual space X**. However, under the condition
of local compactness of X, it may be identified with X**, The
following theorem is important in view of its applications,.

Theorem 111-5 (Eberlein-Shmulyan). A Banach space X is

reflexive if and only if every strongly bounded sequence of X
contains a subsequence which converges weakly to an element of X
(i.e., locally sequentially compact).

For a proof of the above theorem see, e.g., [23].

Theorem I1I-6., A uniformly convex Banach space is reflexive,

In particular, a Hilbert space is reflexive,

It is known that, for 1 < p < =, the spaces 1P and ¢P are
uniformly convex (see Clarkson [4]) and thus are reflexive.

In the development of stability theory in Chapters V and VI,
we have introduced the concept of equivalent inner product, The
following theorem which was formulated by P. Lax and A. N, Milgram
plays an important role in the construction of an equivalent inner
product.

Theorem 1I11-7 (Lax-Milgram). Let H be a Hilbert space. Let

V(x,v) be a complex-valued functional defined on the product space
H x H which satisfies the conditions:
(1) Sesqui~linearity, i.e.,
V(alxl + azxz,y) = a1V(xl,y) + aZV(xz,y) and

v(x, Byyy + 82y2) = BlV(x,yl) + BZV(X,YZ)-
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(ii) Boundedness, i.e., there exists a positive constant Y

such that

Ve | g vl x| ]yl
(iii) Positivity, i.e., there exists a positive constant §
such that
V(x,x) > 6||x[|2.

Then there exists a uniquely determined bounded linear operator S with
a bounded linear inverse S“l such that

V(x,y) = (x,Sy) whenever x,y € H
and |[s|| < v, Is7H] g 67h
A proof of the above theorem can be found in [23].

Definition III-5. A sequence {xn} in a normed linear space X

1im

n>*

is said to converge weakly to an element x ¢ X if f(xn) = f(x) for

every f € X*, In this case, x is uniquely determined in virtue of

Hahn-Banach theorem; we shall write w-lim X =X or simply x, ¥ x in the
sense of weak converpgence, It is to be recalled that ii: X =Xx or

X, > x denotes convergence in the strong topology (i.e., norm topology).

Theorem I11-8. Let {xn} be a sequence of elements in a normed

W
linear space X, (a) If X X then X, > X but not conversely, (b) If

X 3 x then ]Ixn|| < o for all n and [1x]] < 1in lenl

n-<c
lim
n_mf(xn) = f(x) for every

W

. (o) X, > X

sup :

if and only if (i) w21 [1x || < =, and (i1)

f € D where D is a dense subset of X* (in the strong topology of X*),
As an example of a weakly convergent sequence which is not

strongly convergent, we take the sequence of vectors

= (1,0,0,....), = (0,1,0,.0.)5 ...

€ €

in the Hilbert space (12). This sequence converges weakly to zero since
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) 2
by theorem III-4, givenany f € (27)* there exists an x = (xl,xz,...)
5(22) such that f(en) = (en,x) =x > 0. However, {en} does not
converge strongly to zero since ||xn|! = 1 for every n = 1,2,+5°,
In a Hilbert space H, if the sequence {xn} of H converges
lim

weakly to x € H and n

éwllxn‘| = ||x]|, then {x_} converges strongly

to x. 1In the case of a fin

ite dimensional space, weak convergence
coincides with strong convergence. Weak convergence is related to the
weak topology of X, as strong convergence is related to the strong
topology. In the development of our results, there is no need of the
deeper notion of weak topology; the use of the simplenotion of weak

convergence is sufficient for our purpose .

Definition III-6. A sequence {fn} in the conjugate space X*

of a normed linear space X is said to converge weakly* to an element

K
£ e xx if 10 wi-limg

n>e« n

ﬁ: fn(x) = f(x) for every x € X. We shall write =f

wk
or simply fn -~ £,

Theorem II1I-9, Let {fn} be a sequence of elements in the con-

w*
jugate space X* of a normed space X. (a) If fYl + f then fn + f but

wk
not conversely. (b) If X is a Banach space and, if fn -+ f then l‘fn‘l < o

N

for every n and Ilf|| .

The weak continuity and weak differentiability are defined similarly.

Definition I1I-7., Let x(t) be a vector-valued function defined

on [0, ) to X. x(t) is said to be weakly continuous in t if <x(t), f>
is continuous for each f € X*; it is said to be weakly differentiable in
t if <x(t), f> is differentiable for each f € X*, If the derivative of
<x(t), £> has the form <y(t), f> for each f € X*, y(t) is the weak deri-
vative of x(t) and we write dx(t)/dt = y(t) weakly. Similar terminology

applies if x(t) is defined on (-, «),
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Theorem III-10, For any interval (a,b), if x(t) is weakly

differentiable for t € (a,b) with weak derivative identically zero,

then by using the corollary of theorem III-3 x(t) is constant.

D. Spectral Theory, Semi-groups and Groups
Let T be a linear operator with domain D(T) and range R(T)
both contained in a normed linear space X. The distributions of values
A for which the linear operator (AI-T) has an inverse and the properties
of the inverse when it exists are called the spectral theory for the
operator T.

Definition ITI-8. If A is such that R(A,I-T) is dense in X

and A\, I-T has a continuous inverse (AOI—T)_I, Ao is said to be in the
resolvent set p(T) of T; the inverse ()\OI-T)'1 is denoted by R(AO;T) and
is called the resolvent of T at A,. All complex numbers A not in p(T)
form a set o(T), called the spectrum of T.

Theorem III-11, Let X be a Banach space and T a closed linear

operator with D(T) and R(T) both in X. Then for any 1 € o(T), the
resolvent R(}; T) is an everywhere defined continuous linear operator.
The resolvent p(T) of T is an open set of the complex plane.

The above theorem implies that for any A € p(T), R(AI-T) =
= D(R(A; T)) = X, and that the spectrum o(T) of T is a closed set of the
complex plane. Further details on spectral theory can be. found in [5] or
[23].

In the study of stability of solutions to linear operational
differential equations in the following chapter, we have used extensively

the semi-group and group theory developed by Hille and Yosida. Much
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about this basic concept can be found in their respective books
(8], [23]. However, we shall introduce some of the basic notions
and theorems in the remainder of this section. The concept of
nonlinear semi-groups, which is used in the study of nonlinear
operational differential equations, will be introduced in a later
chapter (see Chapter V). In the following, X is assumed to be a
real Banach space.

Definition III-9. For each t ¢ [0, =), let T, € L(X,X).

The family {Tt;t > 0} L(X,X) is called a strongly continuous semi-
group of class Co or simply a semi-group of class Co if the following

conditions hold:

(i) TsTt Ts+t for s,t > 0.
(ii) '1‘o =1 (I is the identity operator).

. lim -
(1ii) t*to Ttx Ttox for each to > 0 and each x € X.

Definition III-10., The family {Tt; -= < t < o} L(X,X) is
called a strongly continuous group of class CO or simply a group of

class Co if the following conditions hold:

(1) TSTt = TS+t for —» < 5,t <
(ii) To =1
‘e lim _ - -
(iii) ee, Ttx = Ttox for <t < and each x € X.

It is clear that if {Tt; -© < t < w} ig a group, then both
{Tt; t > 0} and {Tt; t < 0} are semi-groups. If {Tt; t >0} is a

semi-group, its norm satisfies for some M >1and B < =

Bt

|1Tt}| SMe for t > 0.

If B can be taken as B = 0, {T, ;

g3 B2 0} is said to be an equibounded

semi-group of class C,3 1f in addition M=1, it is called a contraction
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semi-group of class C_. If B can be taken as B < 0, {Tt; t > 0} is
said to be a negative semi-group of class Co and if, in addition, M=1,
it is called a negative contraction semi-group of class Co. If

{Tt; -» < t < w} is a group then the above inequality is replaced by

Blt]

||Tt|| <Me for = < t <
Similar terminology applies for a group.

Definition II1I-11., The infinitesimal generator A of the semi-

group {Tt; t > 0} is defined by

T, X=X
Ax = lim _h

" ht0 h

for all x ¢ X such that the limit exists.

For the infinitesimal generator A of a semi-group of class C_,
the following properties of A are known (e.g., see Yosida [23]).

Theorem III-12., Let A be the infinitesimal generator of a

semi-group {Tt; t > 0}. Then (a) A is a closed linear operator with
domain U(A) dense in X and the zero vector 0 € V(A), (b) if x € V(A)
then Ttx e D(A) for all t > 0 and d/dt (Ttx) = ATtx = TtAx, and (c)
if ||Ttl| <M eBt, then all ) with Re()) > B is in the resolvent set
p(A) of A.

The following result is due to E, Hille and K. Yosida indepen-
dently of each other around 1948 and is called the Hille-Yosida theorem.
We state it with X as a Banach space rather than the more general

locally convex linear topological space.

Theorem III-13 (Hille-Yosida theorem). Let A be a closed

linear operator with domain U(A) dense in X and range R(A) in X. Then A

is the infinitesimal generator of a semi-group {Tt; t > 0} satisfving
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[T || < #e® with M > 1 and 8 < = 1f and only if there exists real
numbers M and 8 as above such that for every integer n > 8, n ¢ p(A)

and

| IR(n;8)™] |

H@I=0)™| < M(=B)™  (m=1,2,-++).
Notice that in the above theorem, B can be positive as well as negative.

Definition III-12. Let A be a linear operator with domain

D(A) and range R(A) both contained in a Hilbert space H, A is called
dissipative with respect to the inner product (+s.) of H if
Re (Ax,x) < O for x e D(A)
and is called strictly dissipative if there exists a B > 0 such that
Re(Ax,x) < =-B(x,x) for x € D(a).

Theorem III-14. Let A be a linear operator with domain D(A)

dense in H and range R(A) in H. Then A is the infinitesimal generator
of a contraction semi-group of class Co in H if and only if A is
dissipative and R(I-A) = H; and A is the infinitesimal generator of a
negative contraction semi-group of class Co in H if and only if A is
strictly dissipative and R((1-B)I-A) = H where B is the constant in
definition III-12,

Corollary. Let A be a densely defined closed linear operator
from a Hilbert space H into He If A and its adjoint operator A* are
both dissipative, then A is the infinitesimal generator of a contraction

semi-group of class Co'

E. Distributions and Sobolev Spaces
In this section, we shall introduce some of the fundamental
definitions and theorems on the theory of distributions and on the

class of Sobolev spaces.
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A real-valued function q(x) defined on a linear space X is

called a semi-norm on X, if the following conditions are satisfied:
1) q(x+y) < q&x) + q(y)

(ii) qax) = |a| a(x),
It follows directly from the definition that a(0) = 0, q(x~y) >
> [q(x) = a(y)| and q(x) 2 0. Let f(x) be a complex-valued (or
real-valued) function defined in an open subset  of the Euclidean
space R". The support of f, denoted by supp(f), means the smallest
closed set containing the set {x € Q; f(x) # 0} (or equivalently, the
smallest closed set of  outside of which f vanishes identically).

Definition III-13. By C™(R), 0

m < =, we denote the set

HA

of all complex-valued (or real-valued) functions defined in Q which
have continuous partial derivatives of order up to and including m
(of order < «» if m = «), By CE(Q), we denote the set of all functions
of C™(Q) with compact supports, i.e., those functions of C"(Q) whose
Supports are compact subsets of Q. (A subset of R" is compact if and
only if it is closed and bounded). In the case of m = = the linear
space C:(Q) defined by
(f1 + fz)(x) = fl(x) + fz(x), (af) (x) = of (%)

is of particular importance.

For any compact subset K of {2, let DK(Q) be the set of all
functions f ¢ C:(Q) such that supp(f)e K. Define a family of semi-

norms on DK(Q) by

sup

o
" Jalp,x e k 1P G| (< =)

q f
K, ( )
where

a = (al, Gyy **°, an) with a, >0 (3=1,2,...,n),

]
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o o
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1 2 n
axl axz ...axn

DK(Q) is a locally covex linear topological space. The strict
inductive limit of DK(Q)’S, where K ranges over all compact subsets

of 9, is a locally convex linear topological space. Topologized in

1im

n > n

+ £

this wav.
1s way,

C:(Q) will be denoted by D(22). The convergence
in D(Q) means that the following two conditions are satisfied: (i)
there exists a compact subset K of & such that supp(fn)c K
(n=1,2,...), and (ii) for any differential operator p%, the sequence
Dafn(x) converges to Daf(x) uniformly on K,

Definition III-14. A linear functional f defined and continuous

on D(Q) is called a distribution or a generalized function in ©; and
the value f(¢) is called the value of the distribution f at the testing
function ¢ € D($). The set of all distributions in Q is denoted by
D(Q)* since it is the conjugate space (or dual space) of D(Q). 1Itis
a linear space by
(£ + g)(0) = £(¢) + g(¢), (af)(¢) = af(¢).

Concerning the criteria for a linear functional to be a

distribution, the following two theorems are useful,

Theorem 1II-15. A linear functional £ defined on D(R) is a

distribution in § if and only if f is bounded on every bounded set of

D(R) (in the topology of D(2)).

Theorem III-16. A linear functional f defined on C (Q) is
a distribution in © if and only if f satisfies the condition: To
every compact subset K of @, there correspond a positive constant C
o
a 1 i g suyn h -
and a positive integer m such that £(o) | < C‘ul;m,x c K‘D ¢(x)] when

ever ¢ ¢ DK(Q).
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Definition III-15, The derivative of a distribution f is

defined by
£ = —£( 22Xy L 6 e D).
Bxi 3 xi

Thus,a distribution in © is infinitely differentiable and

n

0@ = DI @ teay nn, ol - ] o
j=1
Sobolev Spaces Wm’p(Q). Let & be an open subset of the

Euclidean space Rn, and m a positive integer. For 1 Sp <@, we
denote by WP (Q) the set of all complex-valued (or real-valued)

functions f(x) = f(xl,xz,...,xn) defined in Q such that f and its

A

: n
distributional derivatives D*f of order la| = Z a m all belong to
4=1
=4

i
Lp(Q). wm’p(Q) is a normed linear space by

(£ + ) (x) = £(x) + g(x), @F){x) = af(x) and

- a P 1/p
el = (T [l a0,

where dx=dxldx2---dxn is the Lebesgue measure in Rn, under the cone-
vention that two functions f and g are considered as the same vector
of wm’p(Q) if f=g a.e. in 2, Thus wm,p(Q) is a subspace of LP(Q).

It is easy to see that wm’z(Q) is an inner product space by the inner

product

(f,g)m’2 = g . é D% £ (x) D% (x) ax.

In fact, the space Wm’p(Q) is a Banach space. In particular,

wh(Q) = wm'z(a) is a Hilbert space by the norm ||f||“15 Ilfllm , and
’

the scalar product (f,g)nls (f,g)m,2.

The spaces Hm(Q) and HE(Q). Let @ be an open domain of R

and 0 <m <o, Then the totality of functions f e C™(Q) for which
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the norm ||f|lm is given by the form as for Wm’z(Q) constitutes

A
an inner product space Hm(Q) by the inner product

‘Z‘ [ D% (x) D%p(x) dx £,z € CT(R).
ol<m

The completion of ﬁm(ﬂ) is a Hilbert space and is denoted by ().
Similarly, the totality of funﬁtions f e Cz(ﬂ) with the norm ||f[lm
and the inner product (f,g)m defined as for f € C™(2) constitutes an
inner product space ﬁz(ﬂ) whose completion is a Hilbert space denoted
by HE(Q).

The above definition implies that C:(Q) is dense in HZ(Q).
In fact, we have

Theorem I1I-17., The subset CZ(Q) of LV(Q), 1 < p s> is

dense in LP(9).

38




IV. STABILITY THEORY OF LINEAR DIFFERENTIAL EQUATIONS

IN BANACH SPACES

This chapter is concerned with the stability as well as
the existence and uniqueness of a solution of the operational differ-
ential equation

dx(t)
dt

= Ax(t) (t 2 0) (IV-1)

where the unknown function x(t) is a vector-valued function defined

on [0, ») to a real Bamach space X and A is a given, in general un-
bounded, linear operator with domain D(A) and range R{A} both in X,

It is well known that some linear systems of differential equations,

both ordinary and partial, can be reduced to the form as in (IV-1) and

in such cases A may be considered as an extension of a linear differen-
tial operator., In order to examine the stabllity of solutions to (IV-1),
it is only necessary to characterize their properties without actually
constructing the solutions. This is done by considering the properties
of a semi-group because if A is the infinitesimal generator of a semi-
group {Tt; t > 0} of bounded linear operators on a Banach space X then

a solution to (IV-1) starting at t, 2 0 from x € D(A) is given by

x(t; Xy t ) = T,x, for all t > t_ with x(to; X s to) = x_. Thus it is
important to impose conditions on the operator A so that it is the infin-
itesimal generator of a semi-group from which the existence of a solution
is ensured. Then, the stability criteria can be established from the

semi-group properties.
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A. Background

It was seen in Chapter II that by using semi-group or group
theory, a Lyapunov stability theory for the linear operational differ-
ential equation (IV-1) in a real Hilbert space was established in [3]
and the extension to a real Banach space for the case of a group was
accomplished in {21]. 1In order to describe these results and the
further developments, it is convenient to state some fundamental defini-
tions and known results.

Definition IV-1. A solution x(t) of the eaquation (IV-1) with

initial condition x(0) = x € D(A) means:

(a) x(t) is uniformly continuous in t for each t > 0 with
x(0) = x;

(b) =x(t) € D(A) for each t > 0 and Ax(t) is continuous in t
for each t > 0;

(c) the derivative of x(t) exists (in the stronp topology)
for all t > O and equals Ax(t).

Definition IV-2, An equilibrium solution of (IV-1l) is a

solution x(t) of (IV-1l) such that
||x(t)—x(0)|| =0 for allt >0,
and is denoted by x(t) = X

Definition IV-3, An equilibrium solution X, of (IV-1) is said

to be stable (with respect to initial perturbations) if given anvy €> 0,

there exists a 8§ > 0 such that

||x—xe|| < § implies le(t)—x9‘| < e for all t

nv
o)
we

X, is said to be asymptotically stable if
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(1) it is stable; and

lim
t>oo

(ii) ||x(t)-xel| =0

where x(t) is any solution of (IV-1) with x(0) = x € D(A). If there

exists positive constants M and B such that

(i)' ||x(t)—xe||

WA

Me l|x—xe|
then Xy is called exponentially asymptotically stable.

It is clear from the above definition that if 0 e D(A) then
x=0, the null solution, is an equilibrium solution of (IV-1l). Suppose
that an equilibrium solution x, exists. By letting y(t) = x(t)—xe,
equation (IV-1) becomes dy(t)/dt = Ay(t) (t > 0) which is the same form
as the original equation with initial condition v(0) = x(O)-xe. Since
the domain of the operator A which we are concerned with contains the
zero vector, it follows that the study of the stability problem of an
equilibrium solution of a linear system is equivalent to the study of
the stability property of the null solution. Throughout this chanter,
the null solution is assumed as the underlving equilibrium solution
which implies that definition IV-3 for stability or asymptotic stability
of an equilibrium solution can be simplified by taking X, = 0. It
should be remarked that the stability theory developed in this and the
following two chapters is not limited to equilibrium solutions; in fact,
it is valid by starting from any initial element X in D(A) with
solution x(t; Xy to) which is not an equilibrium solution (such as a
periodic solution or any unperturbed solution).

The following three theorems are from [3].

Theorem IV-1, Let H. = (H, (-.-)1) be a real Hilbert space.

1

An inner product (ey.), defined on the linear space H is equivalent to

2
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the inner product (090)1 if and only if there exists a symmetric
bounded positive definite linear operator S € L(Hl, Hl) such that
(x,y)2 = (x,Sy)1 for all x,y € H.

Remarks, (a) The above theorem is stated in a slightly
different way from the original form for the sake of definiteness;
proof of the above result remains the same, It is to be noted that
if s ¢ L(Hl,Hl), the terminologies of symmetry and self-adjointness
of S are the same, (b) Theorem IV-1 has been extended in Chapter V
to the case of a complex Hilbert space where the symmetricity condi-
tion is not explicitly needed.

A Lyapunov functional on a real Hilbert space Hl is defined
in [3] through the symmetric bilinear form

V(x,y) = (x,5y); = (¥,5%);  x,y € Hy
where S ¢ L(Hl,Hl) is a self-adjoint (symmetric) bounded positive
definite linear operator. The Lyapunov functional is defined by
v(x) = V(x,x) X € Hl.
It follows from the above definition and theorem IV-1 that V(x,y)
defines an equivalent inner product with respect to (-.-)1 (see
definition V=7).
Theorem IV-2, Let A be a linear operator with domain D(A)

dense in Hl’ range R(A) in Hl and R(I-A) = H Then the null solution

l.
of (IV-1) is asymptotically stable if there exists a Lyapunov func-
tional v(x) such that

Y0 = 2V(x,A0) < -2 8 | |x]|2 x € D(A).

It has been shown in [3] that under the hypothesis of theorem
IV-2, A generates a negative semi-group so that the null solution of

IV-1 is asymptotically stable,
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Theorem IV-3, Let A be a linear operator with domain D(A)
dense in Hl and range R(A) in Hl such that R(aI-A) = Hl for real o
with |a| sufficiently large. Then A is the infinitesimal generator
of a negative group (i.e., a group of exponential type) if and only
if there exists a Lyapunov functional v(x) = V(x,x) such that for

some constant 6, Yy with 0 < 6§ <y < =

=2yV(x,x) < V(x) = 2V(x,A x) < -26V(x,x) x ¢ D(A).
Remark. By the definition of a Lyapunov functional, (x,y)ZEV(x,y)
defines an equivalent inner product and thus the above inequality is the
same as

2 2
1xl12 5 Gean), < =8Il 1

where (-,-)2 is equivalent to (-,-)1 (see definition V-7).

In order to extend theorems IV-2 and IV-3 to a Banach space,
the notion of semi-scalar product, introduced by Lumer and Phillips
[15] in the study of contraction semi-groups, is used. The following
two theorems are from [15] and their proofs can also be found in [23].

Theorem IV-4 (Lumer). To each pair {x,y} of a complex (or
real) normed space X, we can associate a complex (or real) number [x,y]
such that

1) [x+y,z] = [x,2z] + [y,z];
(ii1) f[ox,y] = afx,v];
(i) [x,x] = |]x|]%;

vy [ix,yll 2 Hxl] Tyl

[x,y] is called a semi-scalar product of the vectors x and y.
Because the construction of a semi-scalar product is essential

in our later development, we give a brief proof of this theorem.
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According to the Hahn-Banach theorem (theorem III-3), given any X, € X
there exists at least one (let us choose exactly one) bounded linear
functional f, € X*, the dual space of X, such that Ilfxoll = |]x,11
o
and £, (x) = ||x ||2. This is true for any x_ € X, It is clear that
Xy O o o
[X’Y] = fy(x)
defines a semi-scalar product.

Definition IV-4. Let a complex (or real) Banach space X be

endowed with a semi-scalar product [x,y]. A linear operator A with
domain D(A) and range R(A) both in X is called dissipative (with
respect to [+s+]) if
Re[Ax,x] < O x € D(A);

and is called strictly dissipative (with respect to [+s.]) if there
exists a real number 8 > 0 such that

Re[Ax,x] < - BIx,x] = ~B||x||2 x € U(A).
The supremum of all the positive numbers B satisfying the above inequal-
ity is called the dissipative constant of A.

Theorem IV-5 (Phillips and Lumer). Let A be a linear operator
with D(A) and R(A) both contained in a complex (or real) Banach space
X such that U(A) is dense in X. Then A generates a contraction semi-
group in X if and only if A is dissipative (with respect to any semi-
scalar product) and R(I-A) = X.

Corollary. Let A be a linear operator with D(A) and R(A) both
contained in a real Banach space X such that D(A) is dense in X. Then
A generates a negative contraction semi-group in X if and only if A is

strictly dissipative with dissipative constant 8 and R(I-(BI + A)) = X.
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The extension of theorem IV-3 from a real Hilbert space to a
real Banach space has been accomplished in [21] where an important
lemma which is also useful in the case of a semi-group is proved.
Before stating these results, we introduce one more definition of
equivalent semi-scalar product.

Definition IV-5. Let [+»+] be a semi~scalar product on the

) with [x,x] = ||x||2. Then the semi-scalar

Banach space (X, ||-

product [.,.]1 with [x,x]1 = ||x||i is said to be equivalent to [es.]

on X if and only if !!-!!1 and ||+|| are equivalent on X.

Lemma IV-1l, Let A be the infinitesimal generator of an equi-

0} in a real Banach space

rt
v

I). Then there exists an equivalent semi-scalar product [es.]

inducing an equivalent norm |

. |1 with respect to which A is dissipa~
tive (strictly dissipative).

This lemma implies that there exist constants B, vy, § with

0 <8 2y <o and 0 < B < = guch that
2 2 2
11112 £ =112 ¢ i1l
and
[Ax,x] 2 0 ([Ax,x] < -B|lx||i) x & D(A).
Theorem IV-6., Let A be a linear operator with domain D(A)

and range R(A) both contained in a real Banach space (X, |

|) such
that U(A) is dense in X. Then A generates a group {Ty; == <t < »)
in X such that {Tt; t > 0} is a negative contration semi-group with

respect to an equivalent norm |

-||l if and only if

2
- |x||i < [axx] g -6l |x[]] x e D@,

45



where 0 < 61 < 0 < o and [+s+] is an equivalent semi-scalar product

consistent with | Il, and

R(I(1-6,)-A) = X, R(I(1 + yl) + A) = X,

D
B. Construction of Lyapunov Functionals

In a real Hilbert space, a Lyapunov functional can be defined
through a bilinear functional V(x,y) on the product space H x H which
satisfies the conditions of symmetry, boundedness and positive definite~
ness. In case of a general Banach space, it can be defined through an
equivalent semi-scalar product which possesses most of the properties
of the above bilinear functional. (e.g., bilinearity, boundedness and
positive definiteness), We shall give a formal definition of a Lyapunov
functional in this chapter.

Definition IV-6. Let X = (X, |

|) be a Banach space, and let

{*++] be an equivalent semi-scalar product inducing an equivalent norm

Il on X. The scalar functional v(x) defined by
v(x) = [x,x] for all xe X
is called a Lyapunov functiomnal,
It follows from the above definition that there exist constants
§ and y with 0 < 8 <y < = such that

6||x||2 g v(x) < Y||x|l2 for all x € X

I and I

since |

|1 are equivalent.
In order to prove the main results, we show the following lemma

which plays an essential role in the construction of a Lyapunov functional,

Lemma IV-2. Let A be the infinitesimal generator of a semi-group

{Tt; t > 0} in a Banach space X with norm ||- |, and let [-»-] be any
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semi-scalar product on X. Then
2[AT.x, T.x] = == ||T.x||% (¢t >0, x e D)) (1v-2)
t7? Tt dt t = ? »

Proof. Let t > 0 be fixed. Choose h with |h| < t so that

T, i * is defined for any x € D(A). By the property of semi-scalar

product, we have

[Tt+_h x=T X, TtX] = [Tt+hx’ Ttx] - [Ttx, Ttx] <

< 1Tl | 1Tl ] =l 12 = Hrgd | ATl ] = Tz D.

w

Hence for h > 0, the above inequality implies, on dividing both side

by h, that

T, X T lITt+hX|| - ||Ttx|]
[ » T x]

h t = HTCXH ( h )'

A

As h + 0, this becomes
d i 2
[AT x, T x] 2 Hroxl| =5 T[] = 1/2 — x|

since the differentiability of Ttx implies the differentiability of

IITtx l. For the case of h < 0, we have on dividing both sides by h
T, . x - T x » Hr xt = x|
t+h t t+h t
[ h ,TtX]; IthxH ( h ).
-1 - ;
Since h (Tt+hx-Ttx) = || L (Ttx-Tt-|h|X)’ it follows by taking h + 0

in the above inequality that

d d 2
(at 1) 2 |l | =S5 gl | = 172 = Lmexd|
Comparing the two inequalities involving the same term 1/2 d||Ttx||2/dt
yields
d 2
2[AT x, T x] = 5 HTtxH

which proves the lemma for t > O. The validity of (Iv-2) for t = 0
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follows from a theorem which will be shown in a later section (see
theorems IV-10 and IV-11) where the derivative of lthxllz at t=0
is taken as the right side derivative.

Remarks. (a) By following the same proof as above, it can
be shown that if A is the infinitesimal generator of a group {Tt;

-® < t < o}, then

2[ATtx, Ttx] = _%? IITtX||2 -® < t < o,
(b) The requirements in lemma IV-2 can be replaced by a weaker assump-
tion: Let x(t) be a vector valued function defined on [a,b] to a
Banach space X. Suppose that x(t) is strongly differentiable with
respect to t (and so ||x(t)|| is also differentiable in t), then for

any semi-scalar product [ey.]

2[5 x(6), x(t)] =L x> a<t<n,
The proof is the same as in lemma IV-2 by replacing Ttx by x(t).

The application of the "direct method" to stability problems
consists of defining a Lyapunov functional with appropriate properties
whose existence implies the desired type of stability. In this chapter,
we are particularly interested in the stable and the exponentially asymptot-
ically stable type. In case the operator A of (IV-1) is an infinitesimal
generator of an equibounded or negative semi-group, then the existence of a
Lyapunov functional having the desired property can be constructed as is
seen in the following.,

Theorem IV-7. If A is the infinitesimal generator of an equi-
bounded semi-group {Tt; t > 0} (of class Co) in a real Banach space X,
then there exists a Lyapunov functional v(x) such that

v (x(t)) 20 (t > 0)
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where x(t) = Ttx is an arbitrary solution of (IV-1) with x e D(A).

Proof. By lemma IV-1, there exists an equivalent semi-scalar

product [«s+] inducing an equivalent norm [ ]+ with respect to which

h

A is dissipative. Define v(x) = [x,x] = ||x||2, then by the equi-

*|| and |

valence relation of | "ll there exists constants §, y with

0 <8 <y <= such that

sl1x|1? s veo = xl13 < vl1xl 1% (1v-3)

Moreover, by lemma IV-2 and the dissipativity of A, for amy x € D(a)

. lim -1 lim -1 2 2
TIT %) = h T (v(T ®)=v(T % = - =
Ve T pe0 SACHE T pxlly - HrxlD

d : 2 m
= % HTtxi il = Z[ALCX, th} 20 (t 2

since Ttx e D(A) for all t > 0. Hence the theorem is proved.

In case A is the infinitesimal generator of a negative semi-
group, we have an analogous theorem.

Theorem IV-8, If A is the infinitesimal generator of a nepative
semi-group {Tt; t 2 0} (of class C ) in a real Banach space X, then
there exists a Lyapunov functional v(x) such that for some 8 > 0

vx() < -8 |Ix@ 117

v

0)
where x(t) = Ttx is an arbitrary solution of (IV-1) with x € D).
Proof. By lemma IV-1, A is strictly dissipative with respect
to an equivalent semi-scalar product [+s.]. By lemma IV-2 and the
strict dissipativity of A we have, following the same reasoning as in
the proof of theorem IV-7,
(T x) = 2[AT,x, T,x] < -2 Bll‘Ttxlli

is induced by [+s+]. The equivalence

for some Bl > 0 where | Il
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] and ||-

between l

|1 implies by using (IV-3) that

. 2 2
V(Ttx) < -2 Bldfthx|| = —BI!TtXII (£ 2 0)
where B = 2816 > 0. Thus the theorem is proved.
In case X is a Hilbert space with norm ||x|| = (x,x)l/z, the

existence of a Lyapmmov functional is still valid although the space

X with the induced norm X = [x x]l/2 is not necessarily a Hilbert
l b

space. However (X, | |1) is at least a Banach space since these two
norms are equivalent and so the completeness of one space implies the
completeness of the other.

The purpose of constructing a Lyapunov functional with the
property as in theorems IV-7 and IV-8 can be seen from the following
considerations: Suppose that a Lyapunov functional v(x) = [x,x]
satisfying

T(x(e)) < =8| [x(t) | |2 (t > 0)

for some B > 0 can be constructed. Regarding v(x(t)) = v(t) as a
function of t, we have

w(e) < - 8lIx@]1% < - 8y [1x®)]]? = -s,v(0)
since ]|x(t)]]i = [x(t), x(t)] = v(x(t)) where Bi = B/y. Upon
integrating the above inequality yields

v(t) < v(0) e P1* (t > 0)

which implies that

6||x(t)||2 < ||x(t)||i = v(x(t)) £ v(x(0)) e P1t

= [x@[1] e™®1® < y||x)||? eP1E,
Thus

x| < G/e)t/? V2815 150y 8y 2 0
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which shows that the null solution is stable for B =0 and is
exponentially asymptotically stable for B > 0,

It is to be noted that the construction of a Lyapunov
functional having the desired property as in the above consideration
is based on the assumption that solutions to (IV-1) exist. Thus the
existence of a Lyapunov functional alone is not sufficient for solv-
ing the stability problem of a partial differential equation unless
the existence of a solution is assured. The assurance of the exist-

ence of a solution requires further restriction.

C. Stability of Linear Operational Equations

As seen in the previous section the existence of a Lyapunov
functional and the satisfaction of certain conditions by its deriva-
tive evaluated along solutions if they exist imply certain stability
properties. Thus, to investigate the stability behavior of the
sclutions of {IV-1) by the Lyapunov's direct method, it is important
to know that a Lyapunov functional exists. In this section, the
necessary and sufficient conditions for the existence of a Lyapunov
functional is established. This relation is valid for a Banach space
as the underlying space as well as for a Hilbert space. Throughout
this section, X denotes a real Banach space and H denotes a real
Hilbert space. It has been seen that in the case of a real Hilbert
space H, a Lyapunov functional can be defined through a symmetric
bilinear form

V(x,y) = (x, Sy) x,y € H

where S € L(H,H) is a self-adjoint bounded positive definite linear
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operator. The boundedness of S implies that

Voo | = Tyl < sl Hxl] [yl &y e B)

which shows that V(x,y) is continuous in both x and y; that is,
for any sequences {xn} and {yn} in H such that x = X and y_ 'y

then

1

i
o V(X 5Y ) = V06D

In the case of a real Banach space X, a Lyapunov functional is

defined through an equivalent semi-scalar product by V(x,v) = [x,v]
which, as is seen in theorem I1V-4, is defined through the choice of a
continuous linear functional fy € X* for each fixed y € X. This
semi-scalar product has the property that [x,y] = fv(X) for each x € X

d || £ =
and |11 = |1yl

in x, it is not clear that fy(x) is also continuous in y since we

. Although the linear functional fy(x) is continuous

know only that ‘lfvll = |ly||. From the Lyapunov stability point of
view it is desirable to know whether or not

lim

90 [ATtx, Ttx] = [Ax,x] x € D(A)

where A is the infinitesimal generator of the semi-group {Tt; t 2> 0}.

If this last can be verified, then solutions need not be constructed.

We shall show that the answer is affirmative by first establishing a
series of lemmas which are essential in the proof of the above convergence
relation. Before proving these lemmas, it is convenient to give the
following notations: Let x(t) be a vector-valued function defined on

[0,2) to a real Banach space X such that x(t) is continuous in t with

itg x(t) = x(0) = x in the strong topology. For each fixed t 2 0, let
M= {m; m =a x(t), a real} and
Y, = {viy=m+ Bx_, m € M, B reall
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where xo is a fixed element in X but not in Mt' It is clear that

Mea‘Y With this notation, we have the following,

t.
Lemma IV-3., (a) For any fixed t > 0, the functional ft on

Mt defined by

£,m) = af[x(®)[|®  for m = ax(t) ¢ M,

is a continuous linear functional on Mt with Ilftll =

(b) For the same t as in (a) and for any number e the functional

Ft on Yt defined by

Ft(Y) = ft(m) + Bc, for y = m + Bx, €Y

t
is a continuous linear functional on Yt'
Proof. Part (a) of the lemma is obvious, for if My, M,y € Mt’

2
then f (ylml + yzmz) = ft((ylal + y2a2) x(t)) = (Ylal + yzaz)llx(t)ll

Yifem) + ypf(my)) and £ m| = Jal |]x(0)[]® = ||x(0)]] |in]| for

To show that F is a

all m € M_ which implies that llft .

linear functional on Yt’ let Vs ¥y € Yt with Y=y + leo and
Yy = m, + Bzxo, then

= (( N 3y f«. 0O v 8 Yx
Felrpyy +vyypd = Fllypmy + vpm)) + ()81 + v,8,)x )

= B Oramy Fovgm) + (vgBy +vBdey = v f () + v 8c,
+ypf (my) + .8, Ce T Y F O YoF, (¥,).
This shows part (b) of the lemma.
Lemma IV-4. For the same fixed t > 0 as in lemma IV-3, there
exists a number . in defining the functional Ft such that
HE L = T1TE]] = [lx®]] (e 2 0).
In particular, for t = O there exists an number c such that the func-

tional Fo on Yo defined by

FO(Y) =f (m)+pc for ysm, + B x €Y withm e M

is a continuous linear functional on Yo with IIFOII = I!foll = |
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Proof. It suffices to show that ||Ft|| < ||ft|| since Ft is
To accomplish

an extension of f which implies that ||ft|| < []Ft

this, we show that there exists a number e in the definition of Ft

such that
|Ft(y)| < ||ft|l l|y|| for all y € Yt. (Iv=-4)
Since IFt(y)I = lft(m) + B ctl fory=m+ B8 X, (Iv-4) is
equivalent to
S1E I m+ 8 xg ]| £ g 8 e 5 HEI] it 8 x[1-£, .
(Iv-4)"'

Now if B = 0, then y = m e M, and Ft(y) ft(m) which implies that (IV-4)

is satisfied for arbitrary fixed t., We assume that B # 0. Hence for
B >0 (Iv-4)' is equivalent to
e ) 1R+ x 1l <5 @ s g 2 g ] 1B+ x,l] -£,@ av-o
and for B < 0 it is equivalent to
1 1 1 1
Lje | fims x| -3 £, < ey 2= FIIEN Hms xl1- 5 £ @
which can immediately be reduced into the same form as in (Iv-4)". Thus
it is sufficient to choose . satisfving
-||ftll ||m'+xo||-ft(m') Se. S ||ft|| ||m'+xo||-ft(m') m' e M.
(1V-5)
The choice of c. is possible since for any m', m" € L
£ty £ @ = £ ) g £ ] e = TIE D] Tt gl
< e ] Hmtx |+ g ] 1T atex 1]
which implies that
e 1) Haten | o ) £ g ] Intexgl1-£ @)
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The arbitrariness of m" in M, implies

sup

wa CHE T TItx [ 14, a1 g [ ]| nte [ |-£,@0) ' e s

and the arbitrariness of m' in Mt yields

inf
oo e It [ @1 < T80 (1] e £ @1,
t (Iv=-5)"'
In order to satisfy (IV-5), we need only to choose e satisfying
s inf
m..‘;gt[-l [£ .01 x| [+£, "] < e, < vaMtH [£ 11 Hm'+x [[-£ ("],
(1v-5)"
It follows that (IV-5)" reduced to the form (Iv-5) by letting m" = -m' for

any m' € Mt' With this choice of Ces (IV-4) is satisfied and from which

[P

PN

! , ll. There-

t!l I!ft[!. Since Ft is an extension of ft, l!Ft!| 2 |!f

t
fore, [[F || = [lf |

. The above is true for each fixed t > 0 and, in
particular for t = 0, Fo is a continuous functional on Yo where ¢ corres-
ponds to cye

In general, e depends on t and there may be infinitely many of
them for any t., The object in the following lemma is to select a number
c_ satisfying (IV-5) such that . is a continuous function of t with

t
c,*cast~> 0.

Lemma IV-5, The constant <, in lemma IV-4 can be choosen as a
continuous real-valued function of t for t ¢[0, tO] with t a fixed posi-
tive number such that . +cas t +v 0,

Proof. Since if me Mt’ then m = ax(t) and ft(m) = a||x(t)||2

for some real a, it follows from ||ft|| = |[x(t)|| that (IV=5)" becomes

inf

L] ax)-x ||+ al Ix©]]%] g, ¢ ™

[||x(t)|| ||Bx(t)+x°||-

- 8| |x(®)]%1.
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Since the continuity of x(t) in t in the strong topology implies the
continuity of ||x(t)|| in t, and since the product or ;he sum of two
continuous functions is continuous, it follows that the real-valued
scalar functions

f(a,t)

~Hx©]] Hex®-x 11+ ol [x©)[|*  and

fn s ry

cn = 1o tt tla wrevee 1o allagantt2
g(Byt) = x{e) ) (8 x{ey+x ji= Blix{T)|]

are continuous functions in t and a, and in t and 8 res-
pectively., From Szpf(a,t) < igf g(B,t), we can choose c, as a right

continuous function of t in the interval [O,to] such that

Szp fa,t) < c, < iEfg(s,t) for t € [O,to].
It follows that
flo,t) < c, £ g(B,t) for all o, B.
The continuity of c_ implies, as t v+ 0, that
£(a,0) 2 ¢, < g(B,0) for all a, B

which, by the same reasoning as in obtaining (IV-5)', vields

Pl Hawmxg [+ ol 151170 g eq < 5 LT et [ 1-81 [},

(¢]

By choosing c=c s the above inequality implies that for each B
2 2
=[xl TIBxtx [ =81 117 < e 2 HIxl] ]Bxtx [ [-8]x]]

that is
-||fo|i ||mo+x°||—fo(mo) fcg I|f0|| I[mo+xo||—fo(mo) for all moeMo.
Therefore, with this chcice of ¢ the functional Fo defined by
F (y) =F (m_ +8x)=£ (m) + B¢
is a continuous linear functional on Mo with ||Fo|| = ||f0|| = ||x||

such that . -+ c as t + 0 which proves the lemma,

As we have mentioned before, if there is a sequence {yn} in

X such that Yo7V strongly, one can not draw a conclusion that
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[x,yn] + [x,y] since [x,¥1]= fYn(x) where ]Ifynll = ||yn|| does not
ensure that {fyn(x)} converges to fy(x) for every x € X, However,
by using the above lemmas the following theorem can be shown
Theorem IV-9. Let A be the infinitesimal generator of an equi-
bounded (negative) semi-group {Tt; t > 0} (of class Co) in a real Banach
space X. Then there exists a semi~scalar product such that
lim _ ;
40 [Ax, Ttx] = [Ax,x] x e D(Aa).
Proof. By lemma VI-4, the functional Ft’ with t fixed, is

a continuous linear functional on Y _with |lFr|| = £ 1] = ||x()]

It follows from the Hahn-Banach theorem that there exists a continuous
linear extension G, on X such that I[Gt!l = !!Ft[| = |]x(t)||. Since

x(t) € Mt
6, (x(e) ] = £ x(eN] = [[x(e)|]? .

It is clear that for arbitrary fixed t >0
G, () = [y, x(t)]
defines a semi-scalar product (see theorem IV-4), In particular, when
t = 0, then
G (¥) = [y,x]
defines a semi-scalar product. For fixed x € D(A), let Ttx = x(t) and
let x_ = Ax-m_ where m_= o T x € M_ with o fixed. We choose this x
o (o} o o't t o )
as the fixed element in the definition of Yt (if X, € Mt’ we consider
. - d
ft in place of Ft). Hence Ax m,tx € Yt’ an

2

[Ax,T,x] = 6 (Ax) = F _(A) = F @ +x) = £ () +c =al|Tx||%c,

On the other hand,
2
[Ax,x] = Go(Ax) = Fo(Ax) = fo(mo) + ¢ = aollx‘! +c .

Therefore, by lemma IV-5
lim
t+0

1im

2, 1im
Lin ] 12+

2

| (ax,T x] = [Ax,x]| < le,~¢| =0,

and the theorem is proved.
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Corollary. Let x(t) be a vector-valued function defined on
[0, ) to X such that x(t) is continuous in t in the strong topology,
and let A be a linear operator with U(A) and R(A) both contained in X
with x(0) = x € P(A). Then

1im

£40 [AX,X(t)] = [AX,X] X € D(A)-

Proof. By the same argument as in the proof of the theorem,
the result follows.

Theorem IV-10, Let A be the infinitesimal generator of an equi-

bounded (negative) semi-group {Tt; t > 0} (of class Co) in X, then

iig[ATtx, TtX] = [Ax,x] x € V(A).

Proof.

|[ATtX’Ttx] - [Ax,x]]| = I[TtAx-Ax,Ttx] + [Ax,Ttx] - [Ax,x]] <
< I[TtAx—Ax,Ttx]l + |[Ax,Ttx] - [Ax,x]] < ||TtAx-Ax|| ||Ttxil+
+ |[Ax,Ttx] - [Ax,x]|

since AT x = T Ax for x € D(A). Thus, by theorem IV-9

lim
t+0

1lim

< 1im
= t40

l[ATtx,Ttx] - [Ax,x]] £40

[T hsenxl | [1Tx] 1+ HA0) (hx, ] = [,x1 =0

which implies the desired result.
Corollary. Let x(t) be a solution to (IV-1) with x(0) = x where

x £ D(A). Then

lim
t+0
Proof. Since x(t) is a solution of (IV-1), it is differentiable in

[Ax(t), x(t)] = [Ax,x].

t and satisfies

Ax(t) = %t- x(t) (t > 0)

with x(0) = x € D(A). Hence Ax(t) is continuous in t in the strong topology.

By the corollary of theorem IV-9 and the continuity of Ax(t) in t, we have
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M0 lax(e), x(0)] - [Ax,x]] <

t+0
o [ax(®) -Ax,x(®)1] + | [Ax,x(0] - [Ax,x]]) <
o | 1Ax@=axl | x| + (3 | taxx(0)1-laxx] = 0

and the result follows,

It is known [15] that the infinitesimal generator of a contrac-
tion semi-group is independent of the choice of semi-scalar product., It
follows that an operator A with dense domain and R(I-A) = X which is
dissipative with respect to one semi-scalar product defined on a Banach
space X, is also dissipative with respect to any other semi-scalar pro-
duct compatible with the norm of X since under the given conditions A is
the infinitesimal generator of a contraction semi-group. This fact enables
us to choose any semi-scalar product on X consistent with the norm of X
such as the one constructed in the proof of theorem IV-9 without affecting
the dissipativity of A, The following two theorems give the necessary
and sufficient conditions for A to generate equibounded and negative semi-
groups respectively,

Theorem IV~11. Let A be a linear operator with domain D(A) dense

in X = (X, |

|) and range R(A) in X. Then A is the infinitesimal gener-
ator of an equibounded semi-group {Tt; t > 0} if and only if there exists
a Lyapunov functional v(x) = [x,x] such that

Vv(x) = 2[Ax,x] £ 0 x € D(A) (1IV=6)
and R(I-A) = X where [+s.] is an equivalent semi-scalar product on X

consistent with |

|5

Proof. Let A be the infinitesimal generator of an equibounded
semi~-group {Tt; t > 0}, By lemma IV~1, there exists an equivalent semi-

scalar product [+s+] inducing an equivalent norm ||-|| such that

1
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[Ax,x] < 0. Define v(x) = [x,x], then by lemma IV-2 and theorem IV-10

_lim1
v = G0t VAo = G dlrad 31121 -

-2 lim

d 2
=.§E(1|Ttxl'l)t=0+ £+0 [ATtx, Ttx] = 2[Ax,x] < 0.

By theorem III-12, moreover, for any A > 0, X ¢ p(A) (the resolvent set
of A), it follows by theorem III-11 that R{I-A) = D(R(134)) = X. Con-
versely, if there exists a Lyapunov functional v(x) = [x,x] satisfying
(1V-6) where [+»+¢] is an equivalent semi-scalar product inducing an
ese].

| O

since D(A) is dense in

By the equivalence relation between the two norms I

is dense in X1=(X,!|°||l) and R(I-A) = Xy

-A) = X by hypothesis., It follows by theorem IV-5

that A generates a contraction semi-group {T ; t 2 0} in X, with |[Tti|l§1
since the dissipativity of A is independent of semi-scalar product on Xl.

It is known that semi-group properties are invariant under equivalent

| and |]°

|. implies that ||T _||<M
1 t''=
for some M > 0, hence {Tt; t > 0} is an equibounded semi-group in X,
Therefore, the desired result is proved.

For the case of a negative semi-group, we have the following
results,

Theorem IV-12. Let A be a linear operator with domain D(A) dense

in X and range R(A) in X. Then A is the infinitesimal generator of a

negative semi-group {Tt; t 2 0} if and only if there exists a Lyapunov

functional v(x) [x,x] such that
v(x) = 2[Ax,x] ¢ -28]|x|]]  (x e V), B> 0)

and R(I-(BI+A))

X where [+s+] is an equivalent semi-scalar product on

X consistent with | -lll.
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Proof. The proof is essentially the same as for theorem IV-11.

The "only if" part follows from lemma IV-1 with V(x) = 2[Ax,x] < -28||x[|i

and the "if" part follows from the corollary of theorem IV-5 with ||Tt‘|l;

< e—Bt

for some B > 0 so that l|Ttl| <M e_Bt with M > 0 (t > 0).
The above two theorems just proved can be applied to a Hilbert

space H although the linear space H with the norm |

'Ill induced by the
semi-scalar product {+>+] may no loﬁger be a Hilbert space. However if

[+s¢] is an equivalent semi-scalar product on H, then the space (H, |

L] Il)
is at least a Banach space, and the semi-scalar product can still be used
to define a Lyapunov functional.

Based on the results obtained in the above two theorems, we can

define a pair of functionals v{x) and w(x) in X such that if certain con-
p

stability of the null solution are ensured. These two functionals, which
in a sense are in parallel to those used by Zubov in [24], are defined by
Vvix) = [x,x] (x e X and w(x) = [Ax,x] {x e U{a))
where [+»+] is an equivalent semi-scalar product and A is the linear
operator in (IV-1l). Thus, v(x) is in fact a Lyapunov functional on X as
defined in definition IV-6. The following theorem stated in terms of
these two functionals is an immediate consequence of theorems IV-1l and
1V-12,

Theorem IV-13, Let A be a linear operator with D(A) dense in X

and R(I-(BI+A)) = X where 8 > 0 and X is a Banach space or a Hilbert
space. If there exist two functionals v(x) and w(x) defined by
v(x) = [x,x] xe X

w(x) = [Ax,x] x € D(A)
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such that

(1) v(x)
(ii) w(x)

2w(x); and

na

-8 |Ix|]®  x e D)
1
where [+s+] is an equivalent semi-scalar product on X. Then the null
solution of (IV-1l) is stable if B = 0 and is asymptotically stable if
g > 0.
Proof. Under the assumption of (i) and (ii),
V(x) = 2[Ax,x] £ -28 ||x||% x ¢ D(Aa).
Thus by hypotheses all the conditions in theorems IV-1l and IV-12 are
satisfied for B = 0 and B > O, respectively. These imply that A generates
an equi~bounded or negative semi-group depending on B = 0 or 8 > 0. The
stability or asymptotic stability of the null solution follows from the
equibounded or negative property of a semi-group respectively,

Remark. Under the assumptions of the above theorem, the condition
R(I-(BI+A)) = X in the theorem can be weakened by assuming that R(aI-A)=X
for some o > 0. This is due to the fact that the condition R(I-(BI+A))=X
can be replaced by R(AI - (BI+A))=X for sufficiently large A (e.g., see
23], p. 250) and thus for any B > 0 a number Ao ? B can be chosen such
that R((AO—S)I—A) = X. This will be satisfied if R( aI-A) = X for some
o > 0 since by lemma V-1 in the next chapter the condition R(aI-A) = X
for somea > O and the dissipativity of A imply that R(aI-A) = X for
every a > 0.

Thus in case of a Hilbert space, the Lyapunov functional v(x)
can be constructed from an equivalent semi-scalar product other than an
equivalent inner product. The importance of theorems IvV-11 and IV-12

lies in the fact that the existence of a Lyapunov functional alone does
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not necessarily ensure the existence of a solution to (IV-1), and in

fact the proof of the existence of a solution to (Iv-1) is, in general,

rather complicated. However, under the additional conditions D(A) = X
and R(I-A) = X the existence of a solution with any initial element

x € D(A) is assured., This assurance makes the stability of a solution

meaningful.
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V. STABILITY THEORY OF NONLINEAR TIME-INVARIANT

DIFFERENTIAL EQUATIONS IN HILBERT SPACES

Many physical and engineering problems are formulated by
differential equations, often, by nonlinear partial differential
equations. Since the stability problem of solutions to partial
rential equations occurs in many fields of science the study
of the stability behavior of solutions to partial differential
equations has been extensively investigated in recent years. How-
ever, most of this work is concerned with specific partial differ-
ential operators and sometimes the existence of a solution is assumed.
In order to unify a theory for a class of partial differential equa-
tions and to develop a stability theory on this class, it is desirable
to consider a general nonlinear operator from a function space into
itself. In this chapter, Hilbert spaces are taken as the underlying
spaces, and only in some special cases (section C), real Hilbert spaces
are considered.

Consider the nonlinear operational differential equation

dx(t)
dt

= Ax(t) (t > 0) (v-1)

where the unknown x(t) is a vector-valued function defined on [0, =)

to a Hilbert space H, and A is a given, in general, nonlinear operator

with domain D(A) and range R(A) both contained in H. The object of

this chapter is to develop criteria for the stability and the asymptotic

stability as well as the existence and uniqueness of solutions to (V-1).
The stability and the asymptotic stability properties of the

solutions of (V-1) are developed in terms of nonlinear contraction and

negative contraction semi-groups. By the introduction of an equivalent
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inner product, these properties are related to the existence and the
construction of a Lyapunov functional which is a direct extension of
the linear case due to Buis [3]. Finally, the semi-linear differential
equation

dx

— 2 + (U
qt AOX f(x) {(v=2)
is discussed as a special case where Ao is a linear closed operator

and f is a nonlinear function defined on a real Hilbert space H, It

turns out that if Ao is a self-adjoint operator in H or in a topologi~

cally equivalent Hilbert space Hl, the conditions imposed on A°

are particularly simple.

A, Nonlinear Semi-groups and Dissipative Operators
In order to describe the results in this and the following
sections, it is necessary to give some basic definitions.

Definition V-1, Let H be a Hilbert space. The family

{Tt; t > 0} is called a continuous semi-groun of nonlinear contraction
operators on H or simply (nonlinear) contraction semi-group on H if
and only if the following conditions hold:

(i) for any fixed t

v

0, Tt is a continuous (nonlinear)
operator defined on H into H;
(ii) for any fixed x € H, Ttx is strongly continuous in t}

(iii) TsTt =T for s, t > 0, and TO=I (the identity operator);

s+t
(iv) ||Ttx-Tty|| < ||x=y|| for all x,y, € H and all t > O,

na

If (iv) is replaced by

e-8t||x'Y‘| (8>0) for all x,y € H and

A

(iv') HT x-T.v||

all t > 0,
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then {Tt; t > 0} is called a (nonlinear) negative contraction semi-group

on . The supremum of all the numbers B satisfying (iv') is called the

contractive constant of {Tt; t > 0}, For a subset D of H, the family

{Tt; t > 0} is said to be a nonlinear contraction (negative contraction)
semi~group on U if the properties (i)-(iv) ((i)-(iv')) are satisfied for
1

w11l o e -
aldl )ﬂ’_y L Vo

Definition V-2. The infinitesimal generator A of the nonlinear

semi-group {T ; t > O} is defined by
w-lim ThX"X

Ax = 100 h

for all x € H such that the limit on the right-side exists in the sense
of weak convergence.

Definition V-3, An operator (nonlinear) A with domain D(A) and

range R(A) both contained in a Hilbert space is said to be monotone [18]
if
Re(Ax ~ Ay, x-y) > 0 for x, v € D(A), (V=-3)
The operator A is called dissipative if —-A is monotone; and A is called
strictly dissipative if there exists a real number B > 0 such that
- (A + BI) is monotone.
It follows from the above definition that
Re(Ax - Ay, x-y) < 0 for x, y € D(4) (v=-4)
if and only if A is dissipative; and
Re (Ax-Ay, x~y) < - B (x~y, x~y), B8 > 0 x,y € D(A) (v=-4)"!
if and only if A is strictly dissipative. The supremum of all the numbers
B such that (V-4)' holds is called the dissipative constant of A. Note
that these conditions coincide with the usual definitions of dissipativity

when A is a linear operator (see definition III-12),
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The definition of a monotone operator has been extended to
the case when A is an operator in a Banach space X. In this case, A
is said to be monotone if

[x=y + a (Ax - Ay)|] 2 [lx-y|| for all « > 0 and x,ve D(A). (V-3)'
Let X* be the set of all bounded semi-linear forms on X; that is, the
pairing between x € X and f € X* denoted by <x,f> is linear in x and
semi-linear in f (If X is a Hilbert space, X* is identified with X and
<*s+> with the inner product in X). For any fixed x ¢ X, define
FGo) = (£ e x5 ox 6> = ||x]{% = [|£] |7,
Then it can be shown that [11] (V-3)' is equivalent to
Re <Ax - Ay, f > > 0 for some f e F(x~y), x,v € D(A). (v-3)"
Note that the inequality (V-3)" is not required to hold for every f ¢
F(x-y). Hence if X is a Hilbert space, (V-3)" is reduced to (V-3),
since in this case F(x~y) = {x-y} consists of a single element and
Re <Ax-Ay, f> = Re(Ax-Ay, x~y).

The condition (V-3)' implies that (I + GA)_l exists and is Lipschitz
continuous for all a > O, where I + aA is an operator with domain D(A)
which maps x into x + oAx. As to the domain of (I + aA)-l, we have the
following lemma (see [11]) which was proved essentially by Komura [13]
(see also [19]).

Lemma V-1. Let A be monotone, If the domain of (I + GA)—l is
the whole of X for some a > 0, then the same is true for all o > 0.

Hence for a monotone operator A, the operator (I + onA)ml has
domain X either for every o > 0 or for no a > O.

Definition V-4, If A is a monotone operator such that U((I+aA)—1)=

=R(I+aA) = X for every a > O (or for some & > 0), then A is said to be

m-monotone,
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Because of the generality of the problem congidered in f11],
the theorems developed in that paper are somewhat complicated. How-
ever, in case the operator A in (V-1) is independent of t, as in this
chapter, those theorems are relatively simple and can be stated in
terms of non-linear contraction semi-groups. Now we restate the main
theorems in [11] when A in (V-1) is independent of t.

Theorem V-1. Let X and X* be both uniformly convex spaces, and
let -A be m-monotone. Then A is the infinitesimal generator of a non-
linear contraction semi-group {Tt; t > 0} on D(A) such that for any
x € D), Ttx is the unique solution of (V-1) with the initial condition
Tox = x. A solution x(t) of (V-1) satisfies: (i) For each x(0) € V),
x(t) € V(A) for all t > 0; (ii) x(t) is uniformly Lipschitz continuous
in t; (iii) the weak derivative of x(t) exists for all t > 0 and equals
Ax(t); (iv) the strong derivative dx(t)/dt = Ax(t) exists and is strong-
ly continuous except at a countable number of values t.

Through out this chapter, conditions (i)-(iv) of the above theorem
specify what is meant by a solution of the differential equation of the
form (V-=1). It should be remarked here that except for the assumption
of m-monotonicity, the operator A is arbitrary. This is different from
much of the work on nonlinear evolution equations in Hilbert spaces or
in Banach spaces in which only semi-linear equations of the form (V=2)
were considered (cf. Browder [1], Kato [9]). This latter type of equa-
tion will be discussed in a later section by applying the results for
the general form (V-1).

It is clear from the above theorem that if A is dissipative in

the sense of (V-4) and X and X* are uniformly convex, then an equilibrium
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solution (or a periodic solution) if it exists, would be stable by

the contraction property of the semi-group., However, it is not

trivial to relate exponentially asymptotic stability directly to

such a property. If A is linear and is the infinitesimal generator

of a contraction semi-group {Tt; t > 0} of class Co’ then the family
{e-BtTt; t > 0} for some B > 0 is a negative contraction semi-group
with the infinitesimal generator A - BI. But when A is nonlinear,

the contraction semi-group {Tt; t > 0} generated by A is nonlinear

and so the family {e-BtTt; t > 0} is not, in general, a semi-group since
property (iii) in definition V-1 does not hold. However, with a slight
modification, necessary and sufficient conditions for the exponentially
asymptotic stability analogous to the linear case still holds. This
can be achieved by using the negative contraction semi-group property.
Before doing this, we show in this section some basic results which

will be needed in the later sections. We leave the development of

we introduce the concept of equivalent inner product.,

Theorem V-2, Let A be a nonlinear operator with domain U (A)
and range R(A) both contained in a Hilbert space H such that R(I-A)=H,
Then A is the infinitesimal generator of a nonlinear contraction semi-
group {Tt; t > 0} on U(A) if and only if A is dissipative (i.e. -A is
monotone),

Proof. Sufficiency: suppose A is dissipative, (i.e. -A is
monotone), Then ~A is m-monotone, for by hypothesis, R(I+(-A)) =
R(I-A) = H, Since H* is identified with H, it is also a Hilbert space,
Thus H and H* are both uniformly convex. The sufficiency follows from

theorem V-1,
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Necessitv: Let A be the infinitesimal generator of a non-linear
contraction semi-group {Tt; t > 0} on D(A). Then for anv x,y € D(A)
Re(h_l(Thx—x)—h'l(Thy—y), X=-y) = h-lRe[(Thx—Thy, x-y) = (x-y, x-y)]
L - oyl eyl = Tyl 121 = 0 ey ety |-
-lx=yl{1 20
for all h > 0 since {Tt, t > 0} is contractive. Letting h+0 in the
above inequality, we have, by the continuity of inner product and by

definition V-2

A
(=]

Re(Ax - Ay, x-y) £ for any x,y € D(A).
Hence the theorem is proved.
It should be noted that in the above theorem, it is not assumed
that the domain of A is dense in H. However, if A is a linear operator
in a Hilbert space, the m-monotonicity of -A implies that V(-A) is dense
in H (cf. [11]), and the above theorem is reduced into the well-known
results due to Lumer and Phillips [15]. But it is not known yet whether
or not V(A) is dense in H if A is a m-monotone nonlinear operator. It
will be shown that the nonlinear contraction semi-group {Tt; t > 0} can be
extended by continuity to a nonlinear contraction gsemi-group on ETZT, the
closure of D(A). Hence if D(A) is dense in H, {Tt; t > 0} can be extended
to the whole space H which is a direct generalization of a strongly con-
tinuous semi-group of class C_. The condition R(I-A) = H can also be
weakened by assuming R(I—aoA) = H for some a_ > 0 since the monotonicity
of =A implies: (i) the existence of (I-—onA)-'1 for all a > 0, and (ii)
if D((I—GOA)-l) = H for some a > 0, then D((I-aA)-l) = H for all o > O.
The nonlinear contraction semi-group {Tt; t > 0} generated by A

in Theorem V-2 can be extended t o the closure D(A) denoted by D(A). In
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order to do this, we consider the approximate equation of the form

dxn(t)

—— = Ax (D) x (0) =xeH, =120 (V-5)

where An = A(I—n_lA)-l, and show the following lemma which is proved
based on some of Kato's work in the construction of a solution to (V-1).

Lemma V-2. Let A be a dissipative operator, and let R(I-A)=H,

(n)x of (V=5) which

(n)

is continuously differentiable in the strong topology such that T0 X =

)

= x for each n=1,2,+«+, Moreover, for any x ¢ TJ(A),Tt(n X converges

Then for any x € H there exists a unique solution Tt

e D(A) such that x, »x as koo

uniformly in t as n + », and for x K

k
1lim T(n)x _

lim lim T(n)x _ lim lim T(n)x

oo Lt pow koo Tt Xk T ke poeo 1t Xk* (V-6)
Proof. The operator An = A(I-n-lA)_l is defined everywhere on
H for each n since -A is monotone and by lemma V-1 D((I-A)_l) = R(I-A)=H

implies D((I-n_lA)-l)

H for everv n, An is dissipative for each n and

A

satisfies ||Anx—Any|| < n|lx=y|| (cf. Kato [11]). Hence for each n, Al
satisfies the following conditions:

(i) An is continuous and carries bounded subsets of H into
bounded subsets of H since ||Anx|| < ||Anyo{l +nllx-y|| < ||Anyo!| +
+n||xl|+n||yo|| where Y, is a fixed element in H,

(i1) For each fixed m, (A x-A_y,x=y) g n||x—y]|z since l!AnX‘AnY[I <

n||x-y|

A

. The above conditions imply that for any x € H there exists

(n)

x which is continuously differentiable in the

strong topology such that To(n)x = x for each n (cf. Browder [1] or Kato [9]).

a unique solution Tt

It can be shown by the dissipativity of An that

I ITt(n)x—Tt(n)yI | ; | Ix—y” X,V € H (V—7)

uniformly in t and n (see lemma V-5 with sz = x(t)). Since the solution
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(n)

Ttx of (V-1) is constructed as the limit of Tt x as n > «® and for

lim o (n)

e Ty Y converges uniformly in t

y ¢ D(A) the strong limit Tty =

(cf. [1l1]), it follows by (V-7) that Tt(n)x converges uniformly in t

for x € D(A). Moreover by (V-7) for X € D(A) and X, > x as k > e

lim

ko

(

lim
koo

iz, @ = 1, W 1] g B e || = 0

uniformly in t which is the same as

T (n)x - lim T (n)

t koo Tr o Fg uniformly in t.

This last equality relation and the fact that

lim lim lim 1lim

(n) (n) -
ko proo Ith x - Tt xk|| S ko n-oo IIX—Xk" =0
imply that
lim (r)  _ lim lim (n) _ lim 1lim (n)
now Lt = oo kow Tt XK T koe pow Lp o Xt

Thus the lemma is proved.

Following the results of lemma V-2, it is natural to extend
the nonlinear contraction semi-group {Tt; t > 0} to the closure of
D(A) by the relation (V-6). More precisely, we have the following

Lemma V-3, Let {Tt; t > 0} be the nonlinear contraction
(negative contraction) semi-group generated by A on U(A) in theorem

V-1, Then it can be extended to a contraction (negative contraction)

0} on D(A) by defining

v

semi-group {Et; t

E X = lim

X = o Ttxk for x € U(A) (V-8)

where x, € P(A) and x, = X as k » o,

Ik k

Proof. The limit defined by (V-8) exists and is independent

of the choice of Xy in U(A). The first assertion follows from the fact

that for fixed t 0

v

||Ttxk - Ttxj||; llxk - Xj]| -0 as k,j >
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which shows that {Ttxk} is a Cauchy sequence and so it converges to
an element in H. To see that (V-8) is unambiguouslv defined, let
Y € D(A) such that ¥y * ¥. Then

13 1i

lim T - lm T v Next we show that

which implies ‘that TeX = poe TeXp = pom LYo

{T_; t > 0} is a nonlinear contraction semi-groun from D(A) into
t = £

V(A). Tor any fixed t and any pair x, y € D(A) with X5 Yy E D)
and X > X, ¥y >y, we have
o - lim . lim _
T = ol = 20 Hren = T <520 w1 = Tyl
o - lim lim -8Bt -Bt
(!!Ttx - Tty!' T koo ,!Ttxk T S e © § Y He=e " ==y D).
Thus =t is, for each t > 0, continuous and contractive (negative
contractive) ©on D(A). Ttx is continuous in t for any fixed x € U(A).

To see this, let X € D(a) and x, > X. Then

T oy = lim T _ lim lim T (n)X

- - Um (n)x
t ko 7k k2o nre Tt k n>e "t

by using lemma V-2, Since Tt(“) is continuous in t and converges
uniformly in t in the strong topology, we have

lim = _ lim lim ., (n)_ _ lim lim _ (n)_ _
€40 Te¥ T 40 now Tt X T poe g40 g X T X

Hence for any t > 0

lim | = = lim lim lim lim
hoo e = Texl 1= 100 130 T e T 2330 jom [T |
lim | =
=50 T x=xl] =0

since Tt+hx = TtThx and Tt is contractive on U(A)., (Similarly for a

negative contractive semi-group). The continuitv of Ttx in t is proved,

To show that TSTt =T_, , we first show that -’ft maps D(A) into V(A).

s+t
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This follows directly from definition since for any x € U(A) with
x € V(A) and X 7 X, then Ttxk € D(A) for all k which implies that

= 1im , = . : -
Ttx = o Itxk € D(A). Now if x € U(A) then Ttx e D(A) and so

lim T (T _ lim =

koo T (TeX) = 1o Tore®k = TgreX

TT x is defined. Moreover T (T x) =
st s 't

since the limit is independent of the choice of any sequence which

1im

1s 300
norT

T_x,=x,

U

converges to Ttx. Note that Ttxk -> Ttx. Furthermore, Tcx =
that is To = I on D(A). Therefore {Tt; t > 0} is a nonlinear contraction
(negative contraction) semi-group, and the lemma is proved.

Owing to the importance of asymptotic stability in the study
of the stability theory of differential equations, it should be desir-
able to extend theorem V-2 to the case where A is the infinitesimal
generator of a nonlinear negative contraction semi-group. For this
purpose, we first prove the following lemmas which will be used in the
proof of the next theorem and which will play an important role in the
construction of a Lyapunov functional.

Lemma V-4. Let {xn} and {yn} be two sequences in H such that

w w
X, X and V7 yamn->e where - denotes weak convergence. Then

lim .
e (Bpa¥y) = (%) X,y € H.

Proof., Since a weakly convergent sequence is strongly bounded
i.ee, ||xn|| < » for all n (theorem III-8), it follows by the strong
convergence of {yn} that

lim lim _
Un Ly on e B0 i |1 Tyl = o
which implies that

1lim

lim
- (xnsyn)

o Fgp¥)e
By the weak convergence of X, We have

lim (x - lim (

nre n’'n n>o xnly) = (X,Y)-

14




Lemma V-5. Let x(t), y(t) be any two solutions of (V-1) (in
the sense of theorem V-1). Then ||x(t)-Y(t)[|2 is differentiable

in t for each t > 0, and is given by

%Z {Ix(t)—y(t)||2= 2Re (Ax(t)-Ay (t), x(t)-y(t)) for each t > 0,(V-9)

Proof. For any fixed t > O, let h # 0 and |h| < t so that
x(t+h) and y(t+h) are defined., By hypothesis, h_l(x(t+h)—x(t)) b4 Ax(t)
and h—l(y(t+h)—y(t)) 4 Ay(t) we have by the continuity of inner product
and by lemma V-4 that

oo B xCer)=y (ern) [12 = | x(0)-y(0) [12] = H0 0 e(eshy -y (eah)  xCesh) -
1lim

: y(e+h))-(x (0)-y (), x(£)-y (D) ] = | h-l[(X(t+h)-y(t+h)-(X(t)-y(t)),X(t+h)-

-y (t+h)) + (x(t)-y(t), (x(t+h)=y(t+h)) - (x(t)-y(t)))]

T 0 BT Ge(EHR) —x(8) yx (eh)=y (£40)) = (y (£+h)=y (€)% (e+h)-y (£+h)) +

(x(t)=-y(t),x(t+h)=x(t)) - (x(t)-y(t),y(t+h)-y(t))]

]

(Ax(t) ,x(t)=y(t)) - (Ay(t),x(t)-y(t)) + (x(t)-y(t),Ax(t)) = (x(t)=-y(t),Ay(t))

(Ax(t)~Ay(t) ,x(£)-y(t)) + (x(t)-y(t),Ax(t)-Ay(t))

2 Re(Ax(t)-Ay(t),x(t)-y(t)).

Hence, ||x(t)-—y(t)|l2 is differentiable and (v-9) hoids for t > 0. For

t = 0, the above is still valid by taking h > 0 and h + 0 in place of

h -+ 0 and by defining %? {[x(t)—y(t)‘lz at t = 0 as the right-side limit,
The following theorem is an immediate extension of theorem V-2

and is fundamental for the construction of a Lyapunov functional from

which the asymptotic stability of solutions to (V-1) can be ensured.
Theorem V-3, Let A be a nonlinear operator with domain D(A)

and range R(A) both contained in a Hilbert space H such that R(I-A) = H,

Then A is the infinitesimal generator of a nonlinear negative contraction
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semi-group {Tt; t > 0} with contractive constant 8 on D(A), that is

-Bt

iITtx-TtY|| : € HX-YH X, ¥V E D(A) (V-lO)

if and only if A is strictly dissipative with dissipative constant B8,
that is
Re (Ax-Ay, x-y) X - B(x-y, x~y) x,y € D(A). (V-11)
Proof. Necessity: Let A be the infinitesimal generator of

{Tt; t > 0} such that (V-10) is valid. Then

]{Ttx-Tty||2 < e 26 tHx-y||2 for all t > 0 (v-10)"'
since both side of (V-10) are positive. Subtracting Hx-yll2 and then
dividing by t > 0 in the above inequality, (V-10)' becomes

1(e—28t

e ety 2= ey |15 2 6 -0 |xyl|? e 0.

As t v 0, we obtain

. 2 2
T ox=T vyl & =28] lx=v[]" .

dt

Since for any x, y € U(A), Ttx, Tty are solutions of (V-1), it follows
by lemma V-5 that

Re (Ax-Ay, x-y) < -B(x~y, x~y) x, v £ D(A).
Sufficiencv: Let (V-11) holds. Then A is dissipative and by theorem
V-2, it is the infinitesimal generator of a nonlinear contraction semi-

group {Tt; t > 0} on I’(A). Moreover, by lemma V-5

4
dt

since Ttx’ Tty are solutions of (V-1). By integrating the above inequal-

2 2
t|Ttx-Tty|| = 2Re (AT x-AT y,T x~T.y) g -28||Ttx-Tty|| 20

ity, we have
2 =2 2
2=ty [? g €725 |]x=y|]

and the result follows.
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Theorem V-3 is a direct generalization of theorem 1' in [21]
when X is a Hilbert space, for the strict dissipativity in theorem
V-3 is a generalization of the strict dissipativity in the sense of
[21]. Moreover, it can be shown (for instance, see [23]) that the
condition R((1-B)I~A) = H in theorem 1' of [21] can be replaced by
R((A-B)I-A) = H for sufficiently large A > O, Hence for any 8 > 0,
we can choose A such that A = B > 0 which implies that the condition
R((1-B)I-A)= H can be replaced by R(I-(A-8) 1A) = H for A- > O.
However, the latter condition is equivalent to R(I-A) = H in virture
of lemma V-1, since under the assumption of (V-10) or (V-11) in
the theorem, -A is monotone. The equivalence between R{(I-(A-B8)A)=H

and R(I-A) = H follows directly from lemma V-1.

B, Stability Theory of Nonlinear Time-invariant Equations
The object of this section is to develop some criteria in

terms of ithe operator A so that the stabilitv or the asymptotic
stability as well as the existence and uniqueness of solutions to
(V-1) is assured. In the particular case of partial differential
operators, these criteria are in terms of the properties of the
coefficients of the original system of differential equations and
possibly include the given boundary conditions. The results obtained
in the previous section serve as the basis for the development of
a stability theory which can be applied to certain classes of nonlinear
partial differential equations. Before showing these results, it
would be appropriate to give some definitions of stability and

asymptotic stability of an equilibrium solution.
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Definition V=5. An equilibrium solution of (V-1) is an element

x, in D(A) satisfying (V-1) (in the weak topology) such that for any
solution x(t) of (V-1) with x(0) = X,
le(t)-xell =0 for all t > 0.

It follows from the above definition that if x(t) is a solution
to (V-1) with x(0) = x, then it is an egquilibrium solution if and only
if Ax(t) = 0 for all t > O, To show this, let Ax(t) = 0 where x(t) is
a solution of (V-1). Then by theorem V-1 the strong derivative dx(t)/dt
= Ax(t) = 0 exists and is strongly continuous except at a countable
number of values t. This means x(t) = X, (a constant vector) except at
a countable number of values t. But x(0) = x and since any solution of
(V-1) is strongly continuous it follows that x(t) = x for all t > 0
(see also theorem III-10). Conversely, let x(t) be an eaquilibrium sol-
ution of (V-1). Then

lim
h~>0

(Ax(t),z)= (dx(t)/dt, z) = kllf(‘)‘ h™ L (x (t+h)-x(t),2) = n10,2) = 0
for every z € Il and every t > 0, Since x(t) is a solution of (V-1),
x(t) € V(A) and Ax(t) € H for each t > 0; thus the orthogonality of
Ax(t) to every z in Il implies that for each t > O, Ax(t) = 0. Hence
the existence of an equilibrium solution is equivalent to the existence
of a solution to (V-1) satisfying
Ax(t) = 0 for every t > 0

Definitions of stability, asymptotic stability and exponentially
asymptotic stability of an equilibrium solution are the same as given
in definition IV-3., However, we introduce here one more definition of

stability region.

Definition V-6. Let x(t) be a solution to (V-1) with x(0) = x,

A subset U of H is said to be a stability region of the equilibrium
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solution X, if for any € > 0O there exists a § > 0 such that
x € D and ||x—xe|| < § imply ||x(t)-xe|| <e forallt>0

The dissipativity in theorems V-2 and V-3 are defined with
respect to the original inner product of the space. Since the semi-
group property is invariant under equivalent norms, the possibility
occurs that by defining other inmer products inducing equivalent
norms, the semi-group could be made contractive and the infinitesimal
generator dissipative. This follows from the fact that stability
and asymptotic stability are invariant under equivalent norms and
may be verified by the dissipativity of A with respect to an equi-
valent inner product.

Definition V-7, Two inner products (¢ » +) and (e » -)1

defined on the same vector space H are said to be equivalent if and

«|| and |

only if the norms | induced by (¢ » +) and (+ » .)1

B
respectively are equivalent, that is, there exists constants §, Yy
with 0 < § <y < = such that
sl x| < l]xl|1 < vilx]] for all x € H, (v-12)

The Hilbert space Hy equipped with the inner product (. , .%-is said
to be an equivalent Hilbert space of H and is denoted by (H, (. » -)1)
or simply by Hl'

Under the equivalent inner product (e » -)1, the vector space
(H, (- » -)1) is a Hilbert space if and only if the original space
(H, (+ » *)) is, since the completeness of one space implies the
completeness of the other., This fact enables us to weaken the dissi-
pativity condition on the operator A in theorem V-2 and V-3.

Theorem V-4. Let A be a nonlinear operator with domain D(a)

and range R(A) both contained in a Hilbert space H = (H, (+ » +)) such
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that R(I-A) = H, Then A is the infinitesimal generator of a nonlinear
contraction (negative contraction) semi-group {Tt; t > 0} on D(A) in
an equivalent Hilbert space (H, (+ » ')1) if and only if A is dissi-
pative (strictly dissipative) with respect to (-;-)1. In this case
the family {Tt; t > 0} is a nonlinear (nonlinear negative) semi-group

{Tt; t > 0} on D(A) in H. (i.e. conditions (iv) and (iv') are replaced

A

by |[Tx=T vl 5 ¥|lx-y|] and [T x-T v|| s Me™%||x=y|| respectively

for some M > 1).

Proof. Since the inner product (+ » +). is eauivalent to (« , ),

1
the space 0y = (H, (> -)l) is a Hilbert space and R(I-A) = H;. Hence
by considering Hl as the underlying space, all the conditions in theorem
V-2 (theorem V-3) are satisfied implying the first assertion is proved,
To show the second part of the theorem, let A be the infinitesimal gen-

erator of a nonlinear contraction (negative contraction) semi-group

that is

{T.; ¢t > 0} on U(A) with respect to the norm |

t |1)

-Bt

Hrgeetowllhg Tyl (et ylly € eyl sy e D).

By the equivalence relation (V-12), we have

A

-1 -1 -1
JER R I R T e R e T P

(Alrge-t oyl g v6™ ™ [lamy| D) x, v ¢ D).

Since the properties of a semi-group in definition V-1 remains unchanged
under equivalent norms except for possibly the contraction propertv, it
follows that {Tt; t > 0} is a nonlinear (nonlinear negative) semi-group

1.

on D(A) with respect to the original norm (with M = v§
The application of the "direct method" to the stability problem

consists of defining a Lyapunov functional with appropriate properties
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whose existence implies the desired type of stability. In order to
give the definition of a Lyapunov functional on a complex Hilbert
space, we first introduce the following:

Definition V-8. Let H be a Hilbert space, and let V(x,v) be

a complex-valued sesquilinear functional defined on the product space
HxH (i.e. V(alxl + azxz,Y) = alv(xlaY) + aZV(Xz,Y) and V(X,Blyl+82Y2)=
=§1V(x,y1) + EZV(x,yz)). Then V(x,v) is called a defining sesquilinear

functional if it satisfies the following conditions:

(1) V(x,y) = V(y,x) (symmetry)
(A1) Vx,m | S vl |yl for some y > O (boundedness)
(i1i) V(x,x) 2 6||x||2 for some § > 0 (positive definiteness)

Note that condition (ii) implies that V(x,v) is continuous both in x and
in v.

Definition V-9, Let V(x,y) be a defining sesquilinear functional.

Then the scalar functional v(x) defined by v(x) = V(x,x) is called a
Lyapunov functional.

By applying a theorem due to Lax and Milgram, we show the
following.

Lemma V-6. Let {xn} and {yn} be two seauences in H = (U, (es+))
such that X 3 x and y,>vasn + «,  Then

1

im
oo V(XnQYn) = V(x,y) X,v € H,

Proof. By definition of V(x,v), all the conditions (i.e.
sesquilinearity, boundedness and positivity) in the Lax-Milgram
theorem (see theorem III-7) are satisfied. Thus, there exists a
bounded linear operator S with a bounded linear inverse 5™t such that

V(x,y) = (x, Sy) for all x, v € H. (V-13)
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Since a weakly convergent sequence is strongly bounded so that
lenl| < » for all n, it follows by the sesquilinearity of V(x,y)

and by the relation (V-13) that

11 114 14
o | (VGey ) = VG v = S0 VG v =) | = S0 G, SO -y |
11
< 11 1Is I Hyoyl] = o
which shows that
lim lim
noe V(xn’ yn) T o V(xn,y).

Again, by the relation (V-13) and by the weak convergence of {xn}

lim v

n->«

lim (

(x59) = o (x, Sy) = (x, 8y) = V(x, v).

n
Therefore, the lemma is proved by the above two equality relationms.
It follows from the above definitions and lemma V-6 that the
following results can easily he shown.
Lemma V-7, For any x € U,
syl 1=l & veo g vy fxl |2 (V-14)
and for any pair of solutions x(t), v(t) of (V-1)
V(x(t) - y(t)) = 2Re V(Ax(t) - AY(t){ x(t) - y(t)) (V-15)
where ¥(z(t)) denotes the derivative of v(z(t)) with respect to t,
Proof . (V-14) follows from the definition of V(x,v). To
show (V-15), note that by the sesquilinearity of V(x,v) it is easily
seen that
V(x-y, xty) + V(xt+ty , x=y) = 2(V(x,x) - V(v,v)) for any x,v € H,

and by the symmetry of V(x,v), the above equality implies that

v(x) = v(y) = V(x,x) - V(y,y) =-%(V(x—y,X+y) + V(x~y,x+y)) = Re V(x-y,x+y),

Hence for any fixed t > 0 and for any number h
V(x(t+h)=y (t+h))-v(x (£)-y(t)) = Re V(x(t+h)-x(t)-y(t+h)+y(t),x(t+h)+x(t) -

- y(t+h)=-y(t)).
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Dividing both sides by h in the above equality, and by the sesauilin-

earity of V(x,y), this becomes

B [v (e (40 )=y (£+0) ) =v (x (£)=y (£)) ] = Re V<h‘1(x(t+h)—x(t>)-h‘1<y<t+h)—y(t>),
x(t+h)+x (t)-y (t+h) -y (¢))

Since h™t (x(t+h)=-x(t)) g Ax(t) and x(t+h) > x(t) as h > 0, (similarly

these two limits hold by replacing x by y) we have by lemma V-6, as

h >0

L v(x(t)-y(£)) = Re V(Ax(t)-Ay(t),2x(t)=2y(t))=2Re V(Ax(t)=Av (t),

x(£)-y (£))

Thus (V-15) is proved for t > 0, For the case of t = 0, we take h > 0
and let h + 0. Therefore (V-15) holds for all t > 0 by defining
V(x(0)-y(0)) as the right-side limit at t = 0.

it is easily seen from the above lemma that 1f we define
V(x,y) = (x,y) where (*s+) is the inner product of the llilbert snace
H, then ¥ (x(t)-y(t)) < 0 along any two solutions x(t) and y(t) if A
is dissipative. This follows from (V-15) that v(x(t)-y(t)) =
2Re (Ax(t)=-Ay(t), x(t)-y(t)) for all t > 0 and x (t), y(t) e D(A).
Conversely, if ¥(x(t)-y(t)) 2 0 and ¥(x(0)-y(0))=2Re(Ax(0)-Ay(0),
x(0)-y(0)) where x(0) = X, y(O) 2 y are any two elements in D(A), then
A is dissipative. The above argument holds true for the strict dissi-
pativity of A and the relation G(X(t)-y(t)): —28||x(t)-}’(t)||2 where
B is the dissipative constant of A, Hence we have the following
theorem which is equivalent to theorem V-2 (theorem V-3),

Theorem V-5. Let A be a nonlinear operator with domain D(A)
and range R(A) both contained in a Hilbert space H such that R(I-A)=H,

Then A is the infinitesimal generator of a nonlinear contraction
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(negative contraction) semi-group {Tt; t > 0} on D(A) if and only
if the Lyapunov functional v(x) = (x,x) satisfies

2Re (Ax-Ay,x=y) < 0 (¥(x-y) = 2Re(Ax-Ay,x-y) £ -28||x-y| 12)

V(x=y)
(v-16)
where x = x(0), y € y(0) are any two elements of D).
Proof. Let A be the infinitesimal generator of {Tt; t > 0},
then for any x € V(A) there exists a solution Ttx of (V-1) with T0x=x,
and by theorem V-2 (theorem V-3) A is dissipative (strictly dissipative).
Applyving lemma V-7 for t = 0
V(x(0)=-y(0)) = 2Re(Ax(0)-Ay(0), x(0)-y(0))  (x(0)=x, y(0)=vy),
and by the dissipativity (strict dissipativity) of A, it follows that
V(x-y) = 2Re(Ax~-Ay, x-y) £ 0 (Y (x-y)=2Re (Ax-Ay,x-y) < -23‘|X-Y||2)
where 8 is the dissipative constant of A. Conversely, let the Lyapunov
functional V(x) = (x,x) satisfy (V-16). Then A is dissipative (strictly
dissipative) and theorem V-2 (theorem V-3) implies that A is the infinite-
simal generator of a nonlinear contraction (negative contraction) semi~
group.
Lemma V-8. Let V(x,y) be a defining sesquilinear functional
defined on the product space H x H. Then
(x,y)l = V(x,v) X,y € H
defines an inner product (ow)l which is equivalent to (sse).

Proof. By the symmetry and the sesquilinearitv properties of

V(x,y)

(x,y)l = V(x,y) = V(y,x) = (y,x)1 for anv x,y € lI

and

(o xyhagxy, ) = V(agxyFa,x,,y) = o Ve, 9)4apV (xgsy) = oy GpY)ytey (5,904
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for any X sXp,Y € H; by the positivity of V(x,y)
2
(x,x)1 = V(x,x) 2 6[|x||
so that (x,x)l #0 1if x # 0.
Hence (-,-)l is an inner product. The boundedness of V(x,y) implies
that
2
(X:X)l = V(x,x) s YHXH .

Therefore, 6||x||2 < ||X'|i s YHx||2 which shows that (e,.)

1 is

equivalent to (ess).

Lemma V-9. Let S be a bounded linear operator on a complex

T
[¢4)
s}
ot
/2]

o
[\
(e
1)
e
L3
[ anl
H

~~
2]

X,X) is real for any x € H, then S is self-
adjoint. 1In particular, if S is positive definite (i.e. there exists
a real number § > 0 such that (Sx,x) 2 6||x|12 x € 1), then S is
self-adjoint.
Proof. Since S is a linear operator, it is easilv seen that
for any x, v ¢ 1l
(SGety), xty) = (S(x=y),x-y) = 2((Sx,v) + (Sy,x)), (V-17)
and on replacing y by iy in (V-17) ﬁe have
(5(x+iy), xtiy) - (S(x~-iy), x-iy) = -21((Sx,¥) = (Sy,x)).  (V-17)'
By multiplying (V-17)' by i and adding to (V-17) yields
4(5%,y) = [(S(x+y) ,x+y)=(S(x=y),x-y)] + 1[(S(xtiy),x+iy)~(S (x-1y),x~iv)].
Since the above equality holds for arbitrary x, v € H and by hypothesis,
the expressions in brackets are real, we have on interchanging x and y:

4(Sy,x)=[(S (y+x),y+x)~(S(y-x),y-x)] +i [(S(y+ix),y+ix)-(S(y-ix),v-ix)]

[(S (xty) yxty) = (S(x~y), x-y)] + i [(S(x-1y) ,s dy)=(S (xt+iy) ,x+iy) ]

4(Sx,y) = 4(y,Sx),
Thus (x,Sy) = (Sx,y) which shows that S is self-adjoint. In particular,

if S is positive definite then (Sx,x) is real and so S is self-adjoint,
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From the above two lemmas, the following theorem can easilv
be shown.

Theorem V-6, Let H, = (H, (°¢')1) be a complex Hilbert space.

1
An inner product (-,.)2 defined on the same complex vector space H
is equivalent to the inner product (-s-)1 if and only if there exists
a positive definite operator S ¢ L(Hl,Hl) such that

(x,7), = (x, 5Y)4 for all x,y € H. (V-18)

Proof. Suppose that (.,.)1 and (-,-)2 are equivalent, then
by definition there exists constants § and y with 0 < § <y <= such
that
6||xlll < llxl‘z by Yl‘x||l for all x € H,

Define V(x,y) = (x,y)z, then by definition of inner product, V(x,y) is
a sesquilinear functional defined on H, x Hy and that V(x,y) = V(y,x).

Moreover, by the equivalence relation between |

'lll and | |2
Ve | = 1wyl < Hxlly Hyll, < ¥l Tyl and
V(x,x) = (x,x)2 > 62|lx||i .

Hence by the Lax-Milgram theorem there exists a bounded linear operator
S on Hl such that

(x,5), = V(x,v) = (x,5¥), for all x,vy € H.
The operator S is positive on Hl since

(x,Sx)l = (x,x)2 > dzllxlli for all x € H.
Conversely, let S € L(Hl,Hl) be a positive definite operator satisfying
(v-18), then the functional V(x,y) defined by V(x,y) = (x,y)2 = (x,Sy)1
is a sesquilinear functional on Hl X Hl since S is linear. The positive
definiteness of S implies that

V(x,x) = (x,8%); 2 61||x||i for some §; > 0

and that by applying lemma V-9

V(x,y) = (x,5y); = (5x,9)y = (y,5%), = V(y,x).
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Moreover, since S is a bounded operator we have

v, | = (e8] < st il vl
Hence V(x,y) is a defining sesquilinear functional. By lemma V-8
(x,y)2 = V(x,y) defines an equivalent inner product (u-)2 of (-’-a
which proves the theorem.

Theorem V-6 is, in fact, an extension of theorem IV-1l, It
should be noted that the condition of self-adjointness of S is not
required since the positive definiteness of S in a complex Hilbert
space implies that it is self-adjoint.

Theorem V-7. Let A be a nonlinear operator with domain U(A)
and range R(A) both contained in a Hilbert space H = (H,(¢»+)) such
that R(I-A) = H. Then A is the infinitesimal generator of a nonlinear
contraction semi-group {Tt; t > 0} on V(A) in an equivalent Hilbert

space l. = (H,(o:-)l) if and only if there exists a Lyapunov functional

1
v(x) = V(x,x) such that

U(x-y) = 2Re V(Ax-Ay, x-y) <0 x,v € U(A) (v-19)
where V(x,y) is the defining sesquilinear functional of v(x) on H x H,
Proof. Let A be the infinitesimal generator in the Hilbert

space H. as given in the theorem. Then by theorem V-4, A is dissi-~

1
pative with respect to (-,-)1, that is

Re (Ax-Ay, x-y)1 <0 x,y € V(Aa).
Define V(x,y) = (x,y)l. Then V(x,y) is a defining sesquilinear func-
tional defined on H x H. To see this, note that V(x,y) is sesquilinear,
V(x,y) = VT;T;T and by the relation (V-12)
Ve, | < Hxlly vty s ¥l1xl] Hyll for all x,y e u

and

Ve = |Ix|12 2 6% ]x] |2 for all x,v ¢ H.
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Hence the scalar functional v(x) = V(x,x) = (x,x)l is a Lvapunov

functional on the space H. By lemma V-7, for any x, v € D(A)

V(Ttx—Tty) = 2ReV(AT x-AT v, T,x-T v) (t 2 0).
In particular, for t = 0
v(x~-y) = 2ReV(Ax-Ay, x-y) x,v € D(A).

Thus the dissipativity of A with respect to (¢s+), implies that

1

V(x-y) = 2ReV(Ax-Ay, x-y)=2Re(Ax-Ay, *~¥); < 0.

Conversely, suppose that there exists a Lvapunov functional
v(x) = V(x,x) such that (V-19) holds, where V(x,y) is a defining
sesquilinear functional defined on H x H, Bv lemma V-8, the func-
tional (x,y)1 = V(x,y) defines an equivalent inner product of (¢s.),
Hence, by the hypothesis (V-19)

Re(Ax—Ay,x—y)l = ReV(Ax-Ay, x-y) < 0 x,v € D(A)

which implies that A is dissipative with respect to (.,.) The

1°
result follows by applying theorem V-4,

Theorem V-8. Let A be a nonlinear operator with domain U(A)
and range K(A) both contained in a Hilbert space H = (H,(+»+)) such
that R(I-A) = H. Then A is the infinitesimal generator of a nonlinear

negative contraction semi—group'{Tt; t > 0} on U(A) in an equivalent

Hilbert space Hl = (H, (-,-)l) if and onlv 1if there exists a Lyapunov

functional v(x) V(x,x) such that

V(x=y) 2ReV(Ax-Ay, x-y) < —28|'x—y||2 x,v € U(A) (v-20)
for some B > 0 where V(x,y) is the defining sesquilinear functional of
v(x) on H x H,

Proof. The proof is essentially the same as for theorem V-7.

To show the "only if" part, define V(x,y) = (x,y)1 then V(x,v) is a
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defining sesquilinear functional defined on H x H as has been shown
in theorem V-7, Since A generates a nonlinear negative contraction
semi-group, it is strictly dissipative with respect to (-,-)1 with

the dissipative constant Bl (theorem V-4), Thus by lemma V-7 and

| and|

the equivalence relation between ]I-

3

U(x-y) = 2ReV(Ax-Ay,x-y)=2Re(Ax-Ay,x~y); < —Zelllx-ylli <

< -28,8%| |xy]|?
for any x, y € U(A) where we have used the relation (V-12). The result
follows by letting B=816L. Conversely, let a Lyapunov functional
v(x) = V(x,x) exist and satisfy the relation (V-20), then by lemma V=8
the functional
(x,y)l = V(x,v) for all x,vy € H

defines an equivalent inner product (+s-) Hence by (V-20) and the

1.
relation (V-12), we have for any x,y € D(4)

Re (Ax-Ay,»=y); = ReV(Ax-Ay,x-¥) ¢ -8 |x-y]1?

KA

< -8/y? | {x=y| |i

which shows that A is strictly dissipative, Hence the result follows
by applying theorem (V-4).

In theorem V-5 the Lyapunov functional v(x) 1s defined by the
original inner product and in theorem V-7 v(x) is defined by an equi-

vanent inner product (es.) If the defining sesquilinear functional

1.
V(x,y) of v(x) satisfies (V-16) and (V-19) respectively, then together
with the assumption R(I-A) = H, A is the infinitesimal generator of

a contraction semi-group on D(A) in the respective space H and H. The

contraction semi-group {Tt; t > 0} penerated by A in the Hl—space
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satisfics for any x € V(A) and t > O

thx

dt

( » 2); = (AT %, 2), for every z e H;.
However, if is not obvious that the same equality holds for the inmner
product (+s¢)., In other words, if Ttx is a solution of (V-1) in an

equivalent I -space, does it imply that it is also a solution of (V-1)

1
in the original ll-space? The answer is affirmative as can be seen from
the following.

Lemma V-10. Let A be the infinitesimal generator of a nonlinear
contraction (negative contraction) semi-group {Tt; t > 0} on D(A) in an
equivalent Hilbert space Hl = (H,(-»~)l). Then A is the infinitesimal
generator of a nonlinear (negative) semi-group {Tt; t > 0} on the same
domain P(A) in the original Hilbert space H = (H, (+»+)).

Proof. By the equivalence relation between the two inner pro-

ducts (+s+) and (ss+) the sesquilinear functional V(x,v) = (x,y)

l’

defined on the product space H, x H, satisfies all the hypotheses in

1 1

the Lax-Milgram theorem, Thus there exists a bounded linear operator
S with a bounded inverse S_l defined on all oflil such that
(x,y) = V(x,y) = (x,Sy)1 for all x; v e . (v-21)

By hypothesis, A generates the semi-group {Tt; t > 0} in Hl so that

lim
t40 1

It follows from (V-21) and (V-22) that for each z ¢ H

t-l(Ttx—x, z)l = (Ax, 2z) for every z € H. (v=-22)

lim
t+0

lim

-1
t (Ttx-x, z) = 40

t‘l(Ttx-x, 52), = (4x,52)] = (Ax,2)
which shows that A is the infinitesimal generator of the semi-group
{Tt; t > 0} on U(A) in the space H. The fact that {Tt; t > 0} remains

as a semi-group in H is that semi-group property is invariant under
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equivalent norms except for possibly the contraction property. Since

{T,; t 2 0} is a contraction semi-group in H, and l

| ana |

1

are equivalent, we have by the relation (V-12)
T x=Tvl] s v/8 ||x-yl| x, v € D(A)

Alrge-ty|] s v/6 P8 xmy]| x, v ¢ D(A))
and the lemma is proved.

Corollary. Let the operator A appearing in (V-1) be the
infinitesimal generator of a nonlinear contraction (negative contrac-
tion) semi-group {Tt; t > 0} on D(A) in the space Hl = (4, (-,-)1) so
that for any x e D(A), Ttx is the unique solution of (V-1l) with Tox=x.
Then Ttx is also the unique solution of (V-1) with Tox=x in the space

H=(H, (+»s+)) where (¢y.), and (+s+) are equivalent,

1
Proof. Since (V-21) and (V-22) in the proof of the above lemma

hold for any x,y € H, we have for any x € V(A) and t > 0

lim , -1 _ lim -1 _
hs0 h (Tt+hx-Ttx,z) = 10 h (ThTtx-Ttx’ Sz)1 = (ATtx, Sz)l
= (ATtx, z) for every z ¢ H

which implies that Ttx is a solution of (V-1) in the space (H,(ss+))
since all the other properties listed in theorem V-1 remain unchanged
under equivalent norms,

Theorem V-9, Let the nonlinear operator A appearing in (V-1) be
such that R(I-A) = H. If there exists a Lyapunov functional v(x) = V(x,x),
where V(x,y) is a defining sesquilinear functional defined on H x H,
such that for any x, y € U(A)

(1) V(x-y) = 2ReV(Ax-Ay, x-y) <0 or

A

-26| |x-y||? (8 > 0)

(11) Y(e-y) 2ReV(Ax-Ay, x-Y)

A
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Then, (a) for any x € D(A) there exists a unique solution x(t) of (V-1)
with x(0) = x, (b) any equilibrium solution Xy (or periodic solution),
if it exists, is stable under the condition (i) and is asymptotically stable
under the condition (ii), and (c¢) a stability region of X, is D(A) which
can be extended to ERKT, the closure of UV(A), in the sense of lemma V-3,
If, in addition, 0 € D(A) and A0 = 0, then the zero vector is an equili-
brium solution, called the null solution, of (V-1) which is stable or
asymptotically stable according to (i) or (ii), respectivelv.

Proof. By hypothesis and applying theorem V-7, A is the infinite-
simal generator of a nonlinear contraction semi-group on D(A) in an
equivalent space Hl = (H, (-so)l) under the condition (i) and i s the

infinitesimal generator of a nonlinear negative contraction semi-group

on D(A) in Hl under the condition (ii), where the norm [ . |l induced
by ('N)l satisfies
6HXH s I'Xlll h Y||X|i for some 0< 3§ Sy <o,

By lemma V=10, A is the infinitesimal generator of a nonlinear semi-group

{Tt; t 2 0} on D(A) in H such that under the condition (i)

-1 .
T x=-Tyll s v 67 |xyl] x,v € D(A)
and under the condition (ii)
IITtx-Tty|| <Y 6_1 e-Bt ||x-y|[ X,y € V(A) (t > 0).

Since for any x ¢ U(A), Ttx is the unique solution in H, with T0x=x,

1
it follows from the corollary of lemma V-10 that Ttx is also the unique
solution in H with T x=x. By the semi-group property of {Tt; t > 0} in
H, we have under the conditions (i) or (ii)

HTe=x ] g v 67 x|l (22 0)

A

ot -1 -8t
Yy § Te

HA

2 5o || x| G2 0,
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which shows that the equilibrium solution Xgs if it exists, is stable
and asymptotically stable, respectively. Note that Ttxe=xe for all

t > 0. Since by lemma V-3, the contraction semi-group { Tt; t > 0} on D(A)

in the space H, can be extended to U(A) in the e |1-topology, the
same is true for the semi-group {Tt; t > 0} on D(A) in the space H

because the closure of D(A) in the |

-Ill-topology is the closure of
U(A) in the |

|-topology by the equivalence relation of these two
norms. llence the results of (a), (b) and (c) are proved. The stability
property of the null solution follows from (b).

The purpose for the construction of a Lvapunov functional can
be demonstrated as follows: Let v(x) = V(x,x) be a Lvapunov functional
such that for somea > 0

Fx(E)-y(8) < - o |[x(t)-y(0)] ] (t 2 0) (v-23)

for any two solutiomns x(t), v(t) of (V-1), where V(x,y) is a defining
sesquilinear functional. By lemma V-8, the functional
(X,Y)l = V(x,v) x, v el

defines an equivalent inner product of (+s+). Since

v(x) = V(x,x) = (x,x)1 < Y||x|!2 for all x € H,
it follows from (V-23) that
vx(t)=y(t)) < -aly v(x(t)=-y(t))==-2v(x(t)-y(t)) @2x z=a/y),

Integrating the above inequality with respect to t, we have

=2\t
v(x(t)=y(t)) £ v(x(0)-y(0))e (t > 0)
which is equivalent to
2 =2t
| x()-y ()12 < [x@-y (@2 e (£ 2 0)
since v(x) = (x,x)1 = ||x||§ (for all x € H). By the equivalence

relation of |

| and |

|1, there exists constants 6§, y with 0<6gy<e
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such that (V-12) holds. Thus the above inequalitv implies that

|1x(0)=y(e) | |* s 1762 | [x(0)y(0) || g &

182 1x()-y (@ |12

(v/8)%e™ 22 | |x(0)-y () ] |2

which is the same as
Hx(®)=y(e) || g v/6 e F ||x(0)=y(0)||  for t > o.

Hence, if an equilibrium solution X, (or any unperturbed solution) exists,

then by choosing y(0) X, in the above inequality, we have

A

[ x(o)-x || < v/6 ] |x(0)-x_] | for all t > 0

which shows that the equilibrium solution X, is exponentially asymptot-
ically stable if @ > 0, and is stable ifa = 0.

The importance of theorems V-5, V-7, V-8 and V-9 is the fact
that the existence of a Lyapunov functional satisfying (V-16) or (V-20)
alone does not guarantee the existence of a solution to (V-1) and in
general, it is rather complicated to prove such solutions exist, However
under the additional assumption that R(I-A) = H the existence of a
solution with any initial element x & D(A) is assured. This assurance

makes the stability of solutions of (V-1) meaningful.

C. Stability Theory of Semi-~linear Stationary Equations
In this section, we consider the operational differential equa-
tions of the semi-linear form

dx

Tt on + f(x) X € D(Ao) (V=24)
where A, 1s a linear operator with domain D(Ao) and range R(Ao) both
contained in a real Hilbert space H, and f is a given function (in
general, nonlinear in x) defined on H to H. By considering the operator

A+ f(+) as the nonlinear operator A in the previous sections, (V-24)
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becomes a special case of (V-1) and hence all the results developed
in the previous sections are applicable to this case. In particular,
if Ao is the infinitesimal generator of a linear contraction semi-
group of class Co’ it is natural to ask that under what conditions
on f the operator A + f(+) is the infinitesimal generator of a non-
linear contraction semi-group, or equivalently under what conditionms
on f a solution of (V-24) exists and is stable (or asymptotically
stable). One simple answer to this question is that (f(x)-f(y), x-y)<0
and R(I-Ao-f(-)) = H since under these assumptions A=Ao + f(*) is
dissipative and the result follows by applying theorem V-2. However
the requirement R(I-Ao—f(~)) = H by itself is not easy to verify since
it is equivalent to the functional equation
X - on - f(x) = 2

having a solution for every z € H., In order to eliminate this assump-
tion and to refine some assumptions on the operator Ao’ we shall make
use of some results due to Browder [1], [2] for the case of a Hilbert
space, The results obtained in this section include:

(a) The existence and the uniqueness of a solution of (V-24).

(b) The stability or asymptotic stability of an equilibrium
solution as well as the stability region with respect to the equilibrium
‘solution.

In order to show the following results, it is convenient to state
a theorem due to Browder [2].

Theorem V-10 (Browder), Let X be an uniformly convex Banach
space with its conjugate space X* also uniformly convex, and let T and
To be two accretive mappings with domain and range in X. Suppose that

(1) The range of T+I is all of X, D(T) is dense in X.
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(ii) To is defined and demicontinuous (i.e. continuous from
X in the strong topology to the weak topology of X) on all of X and maps
bounded subsets of X into bounded subsets of X.

(ii1i) The mapping T+To defined with domain D(T) satisfies the
condition that
T x|| + + =, as ||x]] ++ = (x € D(T)).

Then, the range of (T+To) is all of X, i.e., for each z in X, there
exists an element x in D(T) such that
Tx + Tox = z,

It is to be noted that in the case of a Hilbert space X, both
X and X* are uniformly convex since X* is also a Hilbert space. More-
over, the definition of accretive operator coincides with monotone
operator when X is a Hilbert space. Now we show the following:

Theorem V-11. Let Ao be the infinitesimal generator of a
(linear) contraction semi-group of class Co. Assume that f satisfies
the following conditions:

(1) f is defined on all of H into H such that it is continuous
from H in the strong topology to the weak topoiogy, and is bounded on
every bounded subset of H.

(11) (&) - £(3), x=y) < 0 for all x, v € H.

Then,

(a) For any x ¢ U(Ao), there exists a unique solution of (V=24)
(in the sense of theorem V~1) with Tox = x such that Ttx is strongly
continuous and is weakly differentiable with respect to t.

(b) Any equilibrium solution X, (or any unperturbed solution),

if it exists, is stable.
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(c) A stability region with respect to the equilibrium solu~
tion x_ (or any unperturbed solution) is D(Ao) which can be extended
to the whole space H in the sense of lemma V-3.

Proof. Let A=A+ f(+) with D(A) = D(Ao). Since an infinitesi-
mal generator of a contraction semi-group of class C0 is densely defined,
dissipative and R(I-Ao) = H (see theorems III-12 and III-14), it follows
by the dissipativity of Ao and by the assumption (ii) that

(Ax-Ay,x-y) = (A x-Ay, x-y) + (£(x)-f(y), x-y) £ 0 for all x,y e D(A)
which shows that A is dissipative. To show that R(I-A) = H, we apply
theorem V-10, ©Note that the operater -A is monotcne and th
-A+ I is all of H with U(-Ao) = D(Ao) dense in H. Thus the operator
T = -Ao is accretive (or monotone) and satisfies the condition (i) of
theorem V-10, To show the conditions (ii) ‘and (iii) ofltheorem V-10,
let To = I-f(+). Then from assumption (i) T0 is defined on all of H
and is continuous from H in the strong topology to the weak topology
and maps bounded subsets of H into bounded subsets of H which shows (ii)
of theorem V-10. To is monotone, for

(T x=T_y, x=y) = (x-¥, x=y) = (£EG)=£(y), x-y) 2 |[x-y| 12 xyveHn
where we have used assumption (ii). Moreover, by letting y=0 in (ii)
gives

(fF(x), x) < (£(0), x) < |[f(0)|| ||x|| for all x € H. (v-25)
It follows by the dissipativity of A and by (V-25) that

[1-Agx+T x| | 2 (-Axett 3,0 /| 1% ] 2 (T x,0/ | |x] =Gy 2= (£ )00 /| |x] |
2 Hxll = £ ]] for all x € D(A) (x # 0) .

Thus ||Tx+Tox|| >+ © as ||x]| > », that is, condition (iii) of theorem

V-10 is satisfied. Hence by applying that theorem we have R(I-A) = R(T+To)=H.
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This later condition and the dissipativity of A imply that A is the
infinitesimal generator of a nonlinear contraction semi-group
{Tt; t > 0} on D(Ao) by applying theorem V-2, Therefore, for any
X € D(AO), Ttx € D(A) and i s the unique solution of (V-24) with
Tox=x and such that Ttx is strongly continuous and weakly once
differentiable with respect to t. Since

||Ttx-Tty|l < ||x7y|| for allt > O X,V € U(Ao)
it follows that by taking y as the equilibrium solution Xgs if it
exists, then it is stable. Note that Ttxe = Xge The above inequal-
ity holds for any x, y € U(Ao) which implies that a stability region
is U(Ao), and by lemma V-3 this region can be extended to the whole
space H since U(AO) is dense in H., Therefore, the theorem is proved,

The above theorem can be extended to the asymptotic stability
of an unperturbed solution. This can be achieved by making use of
theorem V-3,

Theorem V-12, Let Ao be the infinitesimal generator of a
(linear) negative contraction semi-group of class C0 with contractive
constant-B., Assume that f satisfies the following conditions:

(i) f is defined on all of H into B such that it is contin-
uous from H in the strong topology to the weak topology and is bounded
on every bounded subset of H,

1i) (f&x) - £(), x=y) 2 k||x-y|l2 with k < 8 for all x,y ¢ I,
Then,

(a) For any x € V(Ao), there exists a unique solution T x to
(V-24) with T x=x such that T x is strongly continuous and is weakly

differentiable with respect to t.
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(b) Any equilibrium solution (or any unperturbed solution), if
it exists, is asymptotically stable,

(c) A stability region with respect to anv unperturbed solution,
including an equilibrium solution, is D(AO) which can be extended to the
whole space I in the sense of lemma V-3,

Proof. Let A = At f(*). Since Ao is the infinitesimal genera-
tor of a negative contraction semi-group, it is densely defined, dissipa-
tive and R(I—Ao) = H. Applying theorem V-3 for the linear case, Ao is
strictly dissipative with dissipative constant B, that is
112
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Qon,x) =5 |x]|| for all x ¢ U(Ao).

fin

Thus the operator A is strictly dissipative with dissipative constant
B~k for

(Ax-Ay, x=y) = (A x-A)y, x=y) + (£E(x)-f(y), x-y) & ~(8-K) | [x-y |2
for all x,y € D(A). To show that K(I-A) = H, we prove R(I-aA) = H for
some o > 0, since the monotonicity of ~A implies that (I-OLA)_1 exists for
every o > 0, and by applying lemma V-1 if R(I-a¢A) = H for some a > 0
then R(I-A) = . The reason for doing this is that if the same argument
as in the proof of theorem V-11 is used it will lead te the unnecessary
requirement k < 1. Let I-aA=-aAo+(I-af(-))=T+To where T = -aAO and
To=1—af(°). Since -Ao is monotone and is densely defined so is T=—aAo,
and since Ao is the infinitesimal generator of a semi-group, o ¢ p(Ao)
(the resolvent set of Ao) for all o« > 0 (theorem II1I-12) which implies
that R(I4T) = R(I—aAo) = JI, Thus the condition (i) of theorem V-10 is
satisfied. The mapping To=I-af(-) is monotone for a < k-l since by
the assumption (ii)

(Tox-ToY,x-y) = (x~¥,x~y) = a(£(x)-f(y),x~y) 2 (1-ak)||x‘Y||2 2 0.
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It is obvious by the assumption (i) that To is continuous on H and

is bounded on every bounded subset of H, which shows that T, satis—

fies the condition (ii) of theorem V-10. Finally, the relation

||Tx+Tox|| + » as ||x|| » » 1is also satisfied. This is due to the

fact that the dissipativity of aAo and the relation (V-25) imply that

||Tx+Tox|l = ||-aon+Tox|| > (—aon+Tox,x) /x| > (Tox,x)/I!x||=

(G- CEG )/ | x| 2 (x| P=al 1€ [] 1=l /] 1x][=] |x||-al £ ||

where a > 0 is a fixed number. Hence by choosing a < k-l, all the

hypotheseg in theorem V-10 are satisfied and the result R(I-aA)=R(T+To)=H

follows. It should be noted that k > 0 so that 0 < a < K™ exists.

(if k < 0, then To is monotone by taking, for instance, o =1 and the

other conditions remain unchanged). By theorem V-3, A is the infinitesimal

generator of a nonlinear negative contraction semi-group {Tt; t > 0} on

D(AO) with the contractive constant B-k. Therefore the results listed in

(a), (b) and (c) follow directly from the negative contraction property

of the semi-group {Tt; t > 0} and by lemma V-3 for the extension of the

stability region.

Remark. If Ao is the infinitesimal generator of a contraction
semi-group instead of a negative contraction semi-group,any unperturbed sol-
ution is still asymptotically stable provided that the constant k appearing in
the condition (ii) is negative, since in this case, we may take 8=0 and
the operator A=Ao+f(-) remains strictly dissipative with dissipative
constant -k, The proof of R(I-A) = H remains the same.

Corollary 1. Under the hypothesis of theorem V-11 (theorem V-12)
and in addition, if £(0)=0, then the null solution is stable (asymptoti-

cally stable) with the stability region the whole space H.
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Proof. If f(0) = O then x(t) = O is an equilibrium solution
(called the null solution) of (V-24). Hence by theorem V-11 (theorem
V-12), the null solution is stable (asymptotically stable) with the
stability region extended to the whole space H,

Coroilarz . Let Ao be the infinitesimal generator of a (linear)
negative contraction semi-group of class Co with contractive constant B8,
and let f be Lipschitz continuous on H with Lipschitz constant k < g,
that is

(x) for all %,y ¢ H, (v=28)

with Tox=x such that any equilibrium soiution X, to (V-24) is asymptot-
ically stable. In particular, if £(0)=0 the null solution is asvmptoti-
cally stable. Moreover, a stability region is U(Ao) which can be
extended to the whole space H.

Proof. By the Lipschitz continuity of f on H, it follows that
condition (i) in theorem V-12 is satisfied. This is due to the fact that
strong continuity implies weak continuity, and by (V-26) with X, a fixed
element in H

1£G | s 11EGe) e [xmxy[| 5 1€Ge ) (] 4 [Ixl] 4k |]x_]|
which is bounded whenever ||x|| is bounded. Moreover, by (V-26)
EGI-£) %) £ ||E@-£0) || [lx=y || k| [x-y]|?
and so condition (ii) in theorem V-12 is satisfied. Hence, by theorem
V=12 the existence and the uniqueness of a solution as well as the
stability property of an equilibrium solution are proved. In particular,
if £(0) = 0 then corollary 1 implies that the null solution is asymptoti-

cally stable,
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Theorem V-13, Let the linear operator AO appearing in (V-24)

be such that 0 € D(A)) and that for some finite number £ (i.e., |B]<=),
(on,x) < B(x,x) for all x ¢ U(Ao).
Let f be defined on U(Ao) to BB such that £(0)=0 and such that for some
finite number k (i.e., |k| < «)
(£(x),x) < k||x||2 for all x é D(Ao).

If 8 > k then the null solution of (V-24) is the only equilibrium solution,

Proof., It is obvious that the zero vector is an equilibrium
solution of (V-24), Let X, be any other equilibrium solution, then
X, € U(AO) and by the statement following definition V-5, one+f(xe) = 0.
It follows that

0= (Ax_ + £(x),x) = (Ax,x) + (£(x),x,) -(s-k)||xe||2

which implies that xe=0 since by hypothesis B-k > 0. Hence the unique-
ness of the equilibrium solution is proved.

Corollary. Under the conditions qf theorem V-12 and in addition
if £(0) = 0, then the null solution is the only equilibrium solution.

Proof. Since Aj is the infinitesimal generator of a negative
contraction semi-group with contractive constant, 8, it is strictly dissi-
pative with dissipative constant 8 and 0 € D(Ao). By the assumption (ii)
of theorem V-12 we have, by letting y=0 in the condition (ii)

(£(x),x) < k||x]]? with k < 8, x¢€H

HA

since £(0) = 0. Hence the uniqueness of the equilibrium solution follows
from the theorem.

Most of the theorems developed in this section up to now assumed
that the linear part Ao of (V-24) is the infinitesimal generator of a

contraction semi-group of class C_. A necessary and sufficient condition
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for Ao having this property is that A0 is dissipative,'ﬁ?zzy = H and
R(I-Ao) = H (see theorem III-14), Again the requirement R(I—Ao) =H
means the existence of a solution of the functional equation

X - on =z
for every z e H which by itself needs further justification. However
in case Ao is a self~adjoint operator which occurs often in physical
applications, this requirement can be eliminated in these theorems.
In order to show this, we first state a theorem from [1] by Browder and

then we consider a densely defined closed operator and take a self-

Theorem V-14 (Browder). Let X be a reflexive Banach space, T

a mapping from the dense linear subset V(T) of X into X*. Suppose that
T=1+G where L is a densely defined closed linear operator from X to X*,
G a hemi-continuous mapping from X to X* with D(G) = X and G taking
bounded subsets of X into bounded subsets of X*, Suppose that:
(i) There exists a completely continuous mapping C from
X to X* such that T+C is monotone ;
(ii) L* is the closure of its restriction to D@LIf) D(L*y
(1i1) There exists a real-valued function c(r) on rY with
c(r) > » as r + » guch that
(Tx,x) 2 c (| |x]]) |Ix]] for all x e D(T).
Then R(T), the range of T, is all of X*,
Remarks. (a) G is said to be hemi-continuous if G is con-
tinuous from every line segment in D(G) to the weak* topology of X*,
(b) A Hilbert space is reflexive.
Theorem V-15, Let Ao be a densely defined closed operator from

H into H. Suppose that:
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(1) A0 is striectly dissipative with dissipative constant B,
that is
(A %,x) < —B||x||2 for all x e V(A );
(i1) Ag is the closure of its restriction to U(Ao)ﬂ D(Ag)
where Ag is the adjoint operator of Ao;
ned on 211 of U into H such that it is con-
tinuous from the strong topology to the weak topology and is bounded
on every bounded subset of Hj
(1v) (EE&-£(y),x-y) < kllx-y||2 with k < B for all x,y € H .
Then

(a) TFor any x € U(Ao) there exists a unique strongly contin-
uous solution Ttx to (V=24) with Tox=x;

(b) An equilibrium solution Xg» if it exists, is asymptotically
stable, 1In particular, if £(0)=0 the null solution exists and is
asymptotically stable;

(c) The stability region can be extended to the whole space in
the sense of lemma V-3,

Proof. Let A=A + £(+), then A is strictly dissipative, since by
hypothesis

(Ax-Ay sx=y) = (A_x=A y,x-y) + (EG)-£(),x=y) g =(8=) | [x-y]| |2
for all x,y € D(Ao) = D(A). To show that R(I-A) = H, let T=I—A=—Ao+(I-f(-)),
then D(T)=D(Ao) is densely defined. Since -A0 is densely defined, Ag
exists and is closed, and by the assumption (ii) -Ag is the closure of
its restriction to U(-Ao)n D(-Ag). By (iii) the operator G=I-f(.) is
continuous from all of H to H in the strong topology to the weak topology
which implies its hemi-continuity from H to H with D(G)=H. The bounded-

ness of G on bounded subsets of H also follows from (iii). Moreover
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(Tx=Ty,x~y) = (x~y,x~y) - (Ax-Ay,x~y) > (1+B-k)||x--y||2 x,y € D(T)
so that T is monotone. In particular by letting y=0 (0 € D(Ao)=D(T))
in the above inequality and since T.0 = 0-A:0 = -f(0), it follows
that

(Tx,x) > (1+8-1) | x| |- (£¢0), %) 2 (e=k) | x| =] |EO D | 1] ],

for all x ¢ U(T)
and since B8 - k > 0 the real valued function c(||x||) defined by
c(||x[) = @+s-t) [ |x] -] [£¢0)|]

has  the property that c(||x||) » @ as ||x|| + », Hence all the
conditions in theorem V-14 are satisfied if we take, for instance, the
completely continuous mapping C=0 (the zero operator which maps all
x € H into the 0 vector in H). Therefore R(I-A) = R(T) = H. By
applying theorem V-3, A is the infinitesimal generator of a non-linear
negative contraction semi-group on D(A) = D(Ao) with the contractive
constant B-k. Thus, the stated results in the theorem follow directly
from the negative contraction semi-group property as in the proof of
theorem V-11.

Remarks. (a) The above theorem can also be proved with R=k=0,
in which case the equilibrium solution is stable with a stability region
U(Ao). The proof is exactly the same by letting B=k=0 and by applying
theorem V-2, (b) If A is dissipative (i.e. B=0 in (1)) and k < 0 in
(iv), then the theorem is still valid. In this case, Ao+f(.) is the
infinitesimal generator of a nonlinear negative contraction semi-group
with the contractive constant -k.

Since an unbounded self-adjoint operator A0 is a densely defined

closed operator having the property that U(Ao) = D(Ag) (in fact A0=Ag .
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see definition III-3) we have, with a stronger assumption on the func-
tion f, the following result which is stated as a theorem because of
its usefulness in applications.

Theorem V-16. Let Ao be an unbounded self-adjoint operator
from H to H and assume that it is strictly dissipative with dissipative
constant B, that is

(on,x) < -B(x,x) for all x € D(Ao).
Let £ be Lipschitz continuous on H with Lipschitz constant k < B,
that 1is
[£G)-£() || < kflx=y||  for all x,y e H.

Then for any x € D(Ao) there exists a unique strongly continuous solution
Ttx to (V=24) with T x=X. Moreover any equilibrium solution X, of (V-24),
if it exists, is asymptotically stable with D(Ao) a stability region, and
this region can be extended to the whole space H, In particular, if
£(0) = 0 then the null solution is asymptotically stable.

Proof. The self-adjointness of Ao implies that Ao is a densely
defined closed operator and U(Ag) = U(Ao). By the Lipschitz continuity
of £, f is continuous in the strong topology and, is bounded on every
bounded subset of H, This assumption (Lipschitz continuity) also implies
that

(E-£G),x-y) < |[FG-£@) ] [lx=y|| 2 k|lx=y[|® for all x,y e H.
Hence, all the conditions in theorem V-15 are satisfied, and the result
follows by applying that theorem.

Remark, The Lipschitz continuity of f in the theorem can be weak-
ened by using the conditions (iii) and (iv) in theorem V-15.

In section B, it has been shown that stability and asymptotic

stability are invariant if the inner product (¢»+) is replaced by an
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equivalent inner product (-,-)1 with respect to which A is dissipative.
In the special case of A=Ao+f(-), where Ao and f(.) are defined as in
(v-24), theorem V-11 (also theorem V-12) remains valid if Ao is the
infinitesimal generator of a contraction (negative contraction) semi-
group of class Co in the Hilbert space (H,(-.-)l) and the inner product

(+s+) in condition (ii) is replaced by (-,.)1 (in theorem V-12, (.5.)

and ||+|| in (i1) should be replaced by («,.)

and I respectively).

1 |1
Because of its usefulness in applications (for instance, a non-self-

adjoint operator in a Hilbert space (H,(+»>-)) can sometimes be made

we show one theorem, which is an extension of theorem V-~16, as an
illustration.

Theorem V-17. Let Ao be a densely defined linear operator from
H=(H,(+s+)) into H, and let f be defined from all of H into H such that

it is continuous from the strong topology to the weak topology of H and

is bounded on every bounded subset of H, If there exists an equivalent

inner product (o,-)l such that Ao is a self-adjoint operator in Hl =
(H,(oa-)l) satisfying
(on,x)l < -B||x||i X € D(Ao)
and if
(f(x)-f(y),x-y)l 2 kl|x—yl!i with k < B, X,y € H,

Then, all the results stated in theorem V-15 are valid,

Proof. Consider Ao as an operator from the space Hl = (H,(-.-)l)
into Hl. Since Ao is self-adjoint in the space Hl’
closed operator and D(Ao) = D(Ag). The continuity and the boundedness

of f with respect to the ] |-norm topology implies the same property

of f with respect to the |

Il-norm topology since these two norms are
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equivalent, By assumption, A0 is strictly dissipative and the condition
(iv) in theorem V-15 is satisfied with respect to (-s-)l. Hence all

the hypothesis in theorem V-15 are satisfied by considering H, as the
underlying space which implies that the operator A=A°+f(-) is the
infinitesimal generator of a nonlinear negative contraction semi-group
{Tt; t > 0} on D(Ao) with contractive constant 8-k in the space Hl' By
lemma V-10, A is the infinitesimal generator of a nonlinear negative
semi-group {Tt; t > 0} on D(Ao) in the original space H. Therefore

all the results in theorem V-15 hold good in this case (The proof is the

same as in the proof of theorem V-9),

108




VI. STABILITY THEORY OF NONLINEAR TIME-VARYING

DIFFERENTIAL EQUATIONS IN HILBERT SPACES

A large class of physical problems are described by a system
of nonlinear partial differential equations which can be reduced to the
form (V-1) but with either time~dependent coefficients of the partial
differential operator or time-dependent boundary conditions. In a
more general case both the coefficients of the differential operator
and the boundary conditions are time-varying, In order to investigate
this type of differential equation in the abstract setting, it is
general type of operator A(t) which depends on the variable t., The
object in this chapter is to extend the principle result in Chapter V
for the case of nonlinear time-varying operational differential equations

of the form

D) < Ae)x(e) (t > 0) (VI-1)
where the unknown vector x(t) is a vector-valued function defined on

R* = [0, =) to a Hilbert space H and A(t) is, for each t > 0, a given

nonlinear operator with domain D(A(t)) and range R(A(t)) both contained
in H. In the first section, we give a formal definition of a solution
and state the main results from [11]. In section B, we present some
results on the general operational differential equations of the form
(VI-1), and in section C we consider, as a special case of (VI-1),
operational differential equations of the form

dx(t)
dt

= Ax(t) + f(t,x(t)) (t > 0) (V1i-2)

where A is a nonlinear operator as in Chapter V and f is a given function

from R+ x H into H. It is seen that equation (VI-2) is a direct exten-
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sion of equation (V-1). In section D, we first discuss briefly another

special case of (VI-1),the equations of the form

2O - A (©x() + £(t,x(8)) (t > 0) (VI-3)
where Ao(t) is, for each t > 0, a linear operator with domain U(Ao(t))
and range R(Ao(t)) both contained in a Hilbert space H and f is a

iven function from R x H into H. The object of thig section is to
deduce 2 number of theorems from the results obtained in section C on

a special form of (VI-3) where Ao(t) = Ao which is independent of t.
We discuss in more detail this type of equation which is a direct exten-

sion of equation (V-24) with f(t,x(t)) = f£(x(t)). Finally, a few results

on the ordinary differential equations of the form

&) < £ (e, x(0) (¢t > 0) (VI-4)
with the same f as in (VI-3) are included in this section since it is

a special form of (VI-3) with Ao(t) = 0,

A. Background
As in the case of Chapter V, the stability theory developed in
this chapter is again based on the recent paper by Kato [11] in which
the existence and uniqueness of a solution to (VI-1) are established,
In order to state the results in [11], we give a formal definition of a
solution of (VI-1) and according to some additional properties of the
solutions, different terminology is used as given in the following:

Definition VI-1. By a solution x(t) of (VI-1) with initial condi-

tion x(0) = x € V(A(0)) in a Hilbert space H (real or complex), we mean

the following:

(a) x(t) is uniformly Lipschitz continuous in t for each t > 0

with x(0) = x.
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(b) x(t) € D(A(t)) for each t > O and A(t)x(t) is weakly
continuous in t.

(c) The weak derivative of x(t) exists for all t > 0 and
equals A(t)x(t).

(d) The strong derivative of dx(t)/dt = A(t)x(t) exists and
is strongly continuous except at a countable number of values t.

(e) For any x(t), y(t) satisfying (a)-(c) with x(0) = x,
y(0) = y both in V(A(0)), there exists a positive constant M such that

| |x(e)=y(t)|] < M| |x=-y] | for all t > O.

The above definition of a solution x(t) is in the sense of a "weak
solution" since x(t) satisfies (VI-1) in the weak topology of H. How-
ever, by the condition (d), x{t) is an almost everywhere strong solution
in the sense that x(t) satisfies (VI-1) for almost all values of t € R+
in the strong topology of H.

Definition VI-2. Let x(t) be a solution of (VI-1) with x(0)=x

(in the sense of definition VI-1). If M < 1, where M is the positive
constant appearing in (e), then x(t) is called a contraction solution;

if M is replaced by Me-St Bt

or by e *~ for some B > 0, then x(t) is called
a negative solution and a negative contraction solution respectively.

It follows from the condition (e) that the solution x(t) of (VI-1)
with x(0) = x € D(A(0)) is unique, and if y(t) = X, is an equilibrium solu-
tion of (VI-1) then the condition (e) implies that x  is stable.

On setting x(t) = T,x for any x e D(A(0)) where x(t) is the contrac~
tion solution of (VI-1) with x(0) = x, it can easily be shown that the
family {Tt; t > 0} forms a nonlinear contraction semi-group on D(A(0)).

However, in this chapter, we do not follow the semi-group property as in

Chapter V, but rather use directly the properties (a)-(e) of a solution
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given in definition VI-1. Yet, if we set x(t) = T x, then by lemma V-3
{Tt; t > 0} can be extended to the closure of D(A(0)) which implies that
the existence of a contraction solution can be extended for any initial
element x € ETKTETT. Hence we can state the following:

Lemma VI-1, If for any x ¢ U(A(0)) there exists a contraction
(negative contraction) solution x(t) of (VI-1) with x(0) = x, then for

any x € D(A(0) » we can define a "solution" x(t) of (VI-1) with x(0) = x

by
1im <

n->oo

x(t) = o ()
where xn(O) =x € V(A(0)) for each n and X >Xxasn >, The "solution"
x(t) is also a contraction solution (negative contraction solution).

It has been shown in the proof of lemma V-3 that the limit defined
above exists and is independent of the choice of any sequence {xn} (in
D(A(0))) which converges to x. Moreover, x(t) € vTK?5$3'for all t 20
and the condition (e) in definition VI-1 with M=1 (with M replaced by

-8t . .
e for a negative contraction solution), is satisfied for any "solution”

y(t) with y(0) = y ¢ D(A(0)).
For convenience, we introduce the following basic assumptions on
the operator A(t) and refer to them thereafter as the condition I or the
conditions I, II etc, to mean that A(t) satisfies the respective assumptions.
I. The domain D of A(t) is independent of t.
II, For each t > 0, there is a real number a (t) > O such that
R(I -a (t)A(L)) = H.
ITII. There exists a positive, nondecreasing function L(r) of r > 0
such that for all x € D and any s,t 20

Hae)x-a)xl | < Ll x|y [e-s] 1+ ||ate)x| ]
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where the norm ||.|| is induced by the inner product (+s.) of the Hilbert
space H=(H,(*s+)).

In the development of the stability and the asymptotic stability
properties of the solutions fo (VI-1), we have used some of the results
obtained in [11]. Because of their importance in the development of our
stability theory, we state the main results from [11] as the following
theorem where we take a Hilbert space as the underlying space.

Theorem VI-1., Let the nonlinear operator A(t) appearing in (VI-1)
satisfies the conditions I, II, III, Assume that for each t > 0, A(t)
is dissipative (i.e. —A(t) is monotone). Then for any x € D, there exists
a unique contraction solution x(t) (in the sense of definition VI-1) with
x(0) = x.

It follows from definition V-4 that for each t > 0, the dissipativity
of A(t) and the condition II imply that -A(t) is m—monotone which is one of
the hypotheses in the main theorems of [11]. It is to be noted that if the
initial time is not at t=0 but at t=t_ > 0, then the result of the above
theorem remains valid in the sense that for any x € U(A(to)) = U there
exists a unique contraction solution starting at x(to) = x, Here defini-
tions VI-1 and VI-2 of a contraction solution should be modified by re-
placing 0 by to whenever it appears; and in the case of a negative solution

or a negative contraction solution, Me-st or e-Bt should be replaced by

Me—S(t-to) and e'B(t‘to) respectively.

B, Stability Theory of General Nonlinear Equations
The contraction property of the solution of (VI-1) obtained in
theorem VI-1 implies that any equilibrium solution Xqs if it exists, is

stable, However, in many physical and engineering problems, it is important
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to know the asymptotic behavior of solutions of the differential equa-
tions describing these systems. In order to extend theorem VI-1 to show
the asymptotic stability of solutions to (VI-1), we first show the
following:

Lemma VI-2, For any pair of strongly continuous ana weakly
differentiable functions x(t), y(t) which satisfy (VI-1l) in the weak
sense, then the real-valued function ||x(t)—y(t)||2 is differentiable

in t for each t > 0 and is given by

%‘gl lx(t)-y(£) | 1% = 2Re(A(£)x(t)-A(t)y(£), x(t)-y(t)) (VI-5)
where d/dt |[x(t)-y(t)||2 at t=0 is defined as the right-side derivative.
Proof. For any fixed t > 0, let h # 0 be such that |h| < t.
Then t+h > 0 so that x(t+h) and y(t+h) are defined. Following the same
proof as for lemma V-5, we have ,
] | Ceth)=y (e+h) | | 2] [x(0)=y (63 | | 21=b™ 2] (x Ce4h)=x(£) , xCt+h)=y (£+h))
-(y(t+h)4y(t).x(t+h)—y(t+h))+(x(t)-y(t).x(t+h)—x(t))-(X(t)-y(t),
y (e+h)-y(t))].
By hypothesis h™1 (x(t+h)-x(t)) 3 A(t)x(t) and x(t+h)=y(t+h) > x(t)=y(t)
as h + 0 (Similarly, h-l(y(t+h)-y(t)) 3 A(t)y(t)); we have on applying

lemma V-4 as h > Q

S 120y ()] P=(a(®)x(8),x()=3 (£))- (A(D)y () ,x (D) =y (£)) +
+(x(t)-y(t) ,A(t)x(t)) = (x(t)-y(t), A(e)y(t))=(A(t)x(t)~
~A()y (), x(t)-y (£))+(x(t)-y (), A(t)x(t)-A(t)y(t)) =
= 2Re (A(D)x(£)=A()y (£) , x(t)=y (£))
vwhich shows that ||x(t)-y(t)||? is differentiable and satisfies (VI-5)
for t > 0. For t=0, (VI-5) 1is still valid by taking h > 0 and h + 0 in
place of h + 0, where we define d/dt ||x(0)-y(0)||® as the right-side

derivative.
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Theorem VI-2. Assume that the nonlinear operator A(t) appearing
in (VI-1) satisfies the conditions I, II, IIT and that there exists a
positive real-valued continuous function B(t) defined on R+ such that
for each t > 0, A(t) is strictly dissipative with dissipative constant
B(t), i.e.,
Re(A(t)x-A(t)y,x=y) < =B(t) (x~y,x-y) for all X,y £ V.,
Then for any x € U, there exists a unique contraction solution x(t) of

(VI-1) with x(0)=x, and for any solution v(t) with y(0) =y ¢ D

t
le(t)—y(t)|| < e-£ B(s)dsllx--yH for all t > 0. (VIi-6)

In particular, if B(t) = B which is independent of t then x(t) is a
negative contraction solution,

Proof. For each fixed t > 0, the strict dissipativity of A(t)
implies the dissipativity of A(t) (see definition V-3) and thus
the existence and the uniqueness of the solution x(t) with x(0)=x ¢ D
follows from theorem VI~1l. To show the inequality (VI~-6), let y(t) be
any solution of (VI-1) with y(0)=y € ¥. Since by definition VI-1 x(t)
and y(t) are strongly continuous, weakly differentiable and satisfy
(VI-1), it follows by lemma VI-2 and by the strict dissipativity of A(t)

that
T 1=y |7 =2Re(A(®)x(£)-A®)(6),x(E)-y (0)) <

< -26(t)||x(t)—y(t)||2
for each t > 0. Note that the function Hx(t)-y(t)ll2 is a positive
real-valued function defined on R+ = [0, ). Writing the above inequal-

ity in the form

(| 1x(e)-y (0 | |2/ (| |x()-y (&) ||% < -28(t)dt
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and integrating on both sides, we have

2 - d
=y % x@-y (@ |2 &2 B
which is equivalent to
t
l1x(e)=y(e) || < S AOLIIPY for all t > 0.
In particular, if 8(t) = B then
lix(e)=-y(e) il e—Btiix—yii for all t > 0

and thus x(t) is a negative contraction solution., lence the theorem
is proved.

Lemma VI-3. Let H1=(H,(-:-)l) be an equiva}ent Hilbert space
of the space II=(l,(+»+)). For any x € D, let x(t) be the solution of
(VI-1) with x(0)=x in the equivalent space Hl (i.e., the underlying space
in definition VI-1 is Hl). Then x(t) is also the solution of (Vi-1) with
x(0)=x in the original space H.

Proof. The equivalence relation between (+s+) and (-.-)l implies
that there exist constants 6, Y with 0 < § <y < = such that

sl ix]] < I‘xlll Sy | 1] | for all x ¢ H (VI-7)
1/2 )1/2
1

| = (*39) and I = (ese . By hypothesis, x(t) satisfies

where II- ’||1
the conditions (a)-(e) of definition VI-1 in the Hl—space, we shall show

that the same is true for x(t) in the H-space. The conditions (a) and (4)

are obviously satisfied with x(t) in the H-space, for strong continuity in

the norm topology is invariant under equivalent norms. By the relation (VI-7),

the condition (e) is satisfied for some N > O since

(=g ] < 67 2@y @1, ¢ ™yl x=yl] g v/8 Mllx=yl]  (v1-8)
1 1

where N = y/6 M, To show that the conditions (b) and (c) are satisfied
in H, define V(x,y) = (x,y). Then V(x,y) is a sesquilinear functional

defined on the product space Hl X Hl and satisfies the following conditions:
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(1) Sesquilinearity: V(alx1 + azxz,y) = alv(xl,y)+a2V(x2,y)
(xlsxzsy € Hl)
VO,B179 + Byyy) = B VGx,y )+B,V(x,y,)
(x9y19}’2 € Hl)
which follows from the definition of inner product defined on a complex
vector space.
-2
(1) Boundedness: [V(x,y)| = |(x,9)] 5 |[x|| |ly|| < s Hxl 1y 1yl
-2 2
Y2 x| |2,

Hence by the Lax~-Miligram theorem (I1I-7), there exists a bounded linear

(ii1) Positivity: V(x,x) = (x,x)=||x||2

v

oy |
operator S with a bounded inverse S * defined on all of Hl such that

(x,y)=V(x,y)-(x,Sy)1 for all x,y € H. (VI-9)
Thus for each fixed t > 0, the relation (VI-9) and the weak differentiability

of x(t) with its derivative equals A(t)x(t) in H; imply that

ﬁi? h’l(x(t+h)-x(t),z) = ;ig h_l(x(t+h)-x(t)’sZ)l -
=(A(t)X(t)'SZ)1 = (A(t)x(t),z) for every z ¢ H (VI-10)

which shows that x(t) is weakly differentiable for t > 0 and equals
A(t)x(t). For t=0, we take h > O with h + O in place of h ~ 0 so that
(VI-10) is valid by defining the weak derivative of x(0) as the right
side weak derivative. This pProves condition (¢) in the E-space. The
condition (b) in the space H follows from (VI-9) and_the weak continuity
of A(t)x(t) in Hl since for each t >0

0 (A(EHX(EH) , 2)=28 (ACErh)x (6¥h),52) 1= (A(E)(8) ,52) = (A(D)x(8) )

for every z ¢ H
where for t=0 the limit in the above relation is taken as the right-side
limit. Therefore, all the conditions of definition VI-1 are satisfied in

the space H and thus the lemma is proved.
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It should be noted that if the solution x(t) of (VI-1) is
contractive in Hl, it is not necessarily contractive in the space H
since the constant N = y/8 M in the relation (VI-8) is, in general,
not less than 1 even though M < 1.

Theorem VI-3, Let (H,(¢»+)) be a Hilbert space and assume
that the conditions I, II, III are satisfied in H. If there exists

an equivalent inner product (-’o)l with respect to which A

AN =
]} 415

»
~~
e

dissipative for each t > 0, then for any x € D there exists a unique
solution x(t) of (VI-1) in the space (H,(+s:)) with x(0)=x.

Proof. Consider A(t) as an operator with domain D and range
R(A(t)) both contained in the equivalent Hilbert space H1=(H,(~,-)l),
we shall show that conditions I, II, III are satisfied with Hl as the

underlying space. The conditions I, II remain valid in Hl' To show

that the condition III is satisfied with respect to I -||1, note that

L= 1D g L(||x2l|) if ||xl|| < ||x2|| since L is nondecreasing. By
hypothesis the condition III holds with respect to ||°l|, we have on

using the relation (VI-7)

]IA(t)x—A(s)xH1 < vi|A(t)x=A(s)x] | 2 YL(||x||)'It-s|(1+||A(s)x||) <
< v LM Il 1 Tes| Qs™  JaG)xl D5 v 2 16T xl 1 Temslarl lacxl )
vhere A= max(1,6™). Let Ly (| |x||=nALG ™ [x[]}), then L (x) as a
function of r > 0 is positive since L(r) is; it is also nondecreasing,
for given any pair of positive numbers 15T, with ry <71, which is equi-
valent to 6-lr1 < é-lrz, then L(é-lrl) < L(G_lrz) which shows that L1(||xl|1),

is non-decreasing. Hence on replacing L(||x||) by L1(|lx|‘1)’ the condition

III is satisfied with respect to |

‘1' By hypothesis A(t) is dissipative

with respect to (s+)., it follows by theorem VI-l that for any x e U

1

there exists a unique contraction solution x(t) in Hl with x(0) = x. There-
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fore by lemma VI-3, x(t) is also the solution of (VI-1) in the space H with
x(0)=x (in general, x(t) is not contractive), Thus the theorem is proved.
Following the same proof of the above theorem and applying
theorem VI-2, we can prove the following theorem for the existence
of a negative solution.
Theorem VI-4, Let H=(H,(*»+)) be a Hilbert space and assume
that the conditions I, II, III are satisfied in H, If there exists
an equivalent inner product (-’-)l with respect to which A(t) is
strictly dissipative with dissiaptive constant B8(t) for each t >0
where R(t) is a positive continuous function defined on R+, then
for any x ¢ U there exists a unique solution x(t) of (VI-1) in H
with x(0) = x, and for any solution y(t) with y(0)=y ¢ V there is a
finite number M > 1 such that

Fa
| Ix(t)-y(e) || < we~f BCS)ds ||

x—yll for all t > O, (Vi-11)
In particular, if 8(t) = B which is independent of t, x(t) is a nega-
tive solution.

Proof. Since all the hypotheses of theorem VI-3 are fulfilled,
the existence of a unique solution follows, ‘To show that the solution
is negative, let x(t),y(t) be any two solutions with x(0)=x, v(0)=y
both contained in V. From the proof of theorem VI-3, A(t) satisfies

the conditions I, II, III in H., and by hypothesis A(t) is strictly

1

dissipative with dissipative constant B(t) with respect to (+s.) Hence

l.
by applying theorem VI-2
t
[lx(o-y®) ], 5 &) B©|y]] (t 2 0).
It follows by the equivalence relation (VI-7) that

t
|x0-y®]] 5 s Ixw-y@ ], £ e B9y

t t
: (,Y/’s)e-'i B(S)dS||X-y||=Me-£ B(S)dSHx_yH (t ; O)
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where M=y/é > 1. If B(t) = B which is independent of t, then

| [x(0)-y () | | < Me™PF||x-y]] for all t > 0
which shows that the solution is negative. This completes the
proof.

An immediate consequence of the relation (VI-1l) is that

inf

under the hypotheses of theorem VI-4, and if >0

B(t) > 0, then
an equilibrium solution xe (or a periodic solution) of (Vi-1), if

t
it exists, is asymptotically stable since f B(s)ds » = as t > = .

)
In particular, if B(t) = B then the equilibrium solution x  is
exponentially asymptotically stable,

By an equilibrium solution Xg of (VI-1), we mean the same
thing as in definition V-5 except with the words "x_ in D(A)" replaced
by "xe in D(A(t)) for all t > 0". It can easily be shown that (see
the proof following definition V-5) the existence of an equilibrium
solution is equivalent to the existence of a solution to (VI-1)
satisfying

A(t)x(t) =0 for all t > 0 » (VI-12)

Theorem VI-5, Assume that the conditions I, II, III are satisfied,

If there exists a Lyapunov functional v(x) V(x,x) such that for each

t>0

v

ReV(A(t)x-A(t)y, x-y) < O for any x,y € U (VI-13)

LY

where V(x,y) is a defining sesquilinear functional defined on H x H. Then:
(a) For any x € U , there exists a unique solution x(t) of (VI-1)
with x(0)=x;
(b) An equilibrium solution X, (or a periodic solution), if it

exists, is stable;
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(c) The stability region of x, 1is U which can be extended to

D, the closure of U, in the sense of lemma VI-1,
If the relation (VI-13) is replaced by

Re V(A(t)x-A(t)y,x-y) 2 -B(t)llx—y||2 for any x,y ¢ D (VI-13)'
inf
£>0

where B{(t) is a positive continuous function on R with g(t) > O,

then (b) can be replaced by:
(b)'" An equilibrium solution X, (or a periodic solution), if
it exists, is asymptotically stable,

Proof. Since V(x,y) is a defining sesquilinear functional defined

on H x H, it follows hy lemma V-8 that

(X,y)l = V(x,y) X, vy e H

=

defines an inner product (-s-)1 which is equivalent to (+»+)., By the
assumption (VI-13), for each t > 0

0 X,v € V

-

Re (A(t)x—A(t)y,x—y)1 = ReV(A(t)x-A(t)y,x~y)

A

which shows that A(t) is dissipative with respect to (+s.). for each

1
t 2 0. Hence, by applying theorem VI-3, for any x € D there exists a
unique solution x(t) of (VI-1) in the original space H with x(0)=x.
By definition VI-1, for any solution y(t) with y(Q)=y ¢ V

=)=y ()] ] < M| |x=y]| | for all t > 0. (VI-14)
It follows by taking y=x_ (if it exists) in the above inequality and

noting that y(t) & X,

[ xCer-x, ||

A

Mllx-xe|| for all t > 0 (VI-14)"'
which shows that the equilibrium solution X, is stable. Since (VI-14)
holds for any solution x(t) with x(0)=x ¢ D, the stabilitv region is thus
the whole domain U, The extension of D into its closure 5follows from
lemma VI-1, In case (VI-13) is replaced by (VI-13)', then

Re (A(E)x=A(t)y,x-y); < = B(e) | x=y ]2 < -B(E) /v |Ix—y||i (x,y € V)
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and so for each t > 0, A(t) 1is strictly dissipative with dissipative

constant B(t)/y with respect to (+».) Thus by applying theorem

l.
VI-4, for any x € U there exists a unique solution x(t) in the space

(Hy(e»2)) with x(0)=x. If an equilibrium solution Xy exists, then

by the relation (VI-11) t

—1£ B(S)dS|

I‘X(t)~xe|| < Me Y |x—xe|| for all t > 0.

Therefore the equilibrium solution X, 1s asymptotically stable since

1
t

inf

£20 B(t) > 0 implies

im *
e [ B(s)ds = =,
o

Corollary 1. Assume that the conditions I, II, III are satis-
fied and that (VI-13) is valid. Then for any two solutions x(t) and y(t)
of (VI-1) with x(0)=x, y(0)=y both in D
v(x(t)-y(t)) < 0 for all t > O.
If (VI-13)' is satisfied, then
Y (E)-y(£)) < -28(8) | |x()-y (1) ]]? for all t > 0.
Proof. It can easily be shown by following the proof of lemma
V-7 that for any two solutions x(t),y(t)
¥ (x(t)-y(t))=2ReV(A(t)x(£)-A(t)y(t),x(t)=y (L)),
The results follow directly from (VI-13) and (VI-13)' since x(t),y(t) € D
for all t > O.
A direct consequence of theorem VI-5 is the following:
Corollary 2. Under the assumptions of theorem VI-5, and in
addition if O € D and A(t)+0=0, Then the null solution is stable under
the condition of (VI~13) and is asymptotically stable under the condition

of (VI-13)',
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C. Nonlinear Nonstationary Equations
Based on the theorems developed in the previous section, we shall
develop some results On the nonstationary differential equations of the

form

928 - ax(e) + £(t,x(8)) (VI-15)
where A, which is independent of t, is a nonlinear operator with domain
D(A) and range R(A) both contained in a real Hilbert space H and f is

a given (nonlinear) function on Rt x H into H. On setting A(t)=A+£(t,.),
the equation of the form (VI-15) becomes a special case of the general
nonlinear equation (VI-1l) and thus the results in section B can be applied
to this type of equation. On the other hand, equations of the form
(VI-15) are direct extensions of the nonlinear differential equations of
the form (V-1) where f can be regarded as identically equal to zero. The
purpose of this section is to modify the basic assumptions I, II, III of
section A so that the existence, the uniqueness, the stability and the
asymptotic stability of a solution can be investigated, For the sake of
convenience in the statements of our results in this and in the remaining
sections of this chapter, we state some basic assumptions on the function
f. These basic assumptions are:

(i) f is defined on Rt x H into H and for each t >0, fis
continuous from the strong topology to the weak topology of H and is
bounded on every bounded subset of H;

(ii) TFor each t > 0,
(£(t,x)-£(t,y), x~y) < 0 for all x,y € H;

(11)' There exists a continuous real-valued function k(t) on

+ sup
R
t>0

such that for each t 20

such that k(t) < B where B is the dissipative constant of A, and

123



(£(t,x)=-£(t,y),x~y) < k(t)llx—yH2 for all x,y e H;

(1ii) There exists a positive nondecreasing function L(r) of

r > 0 such that for all x € UV and any s,t > 0
||£Ct,x)-£(s,x) | | < L(|]x] |y |t=-s| 1+ |Ax+£ (s,x) | )

Theorem VI-6. Let the operator A of (VI-15) be densely defined,
dissipative and R(I-A)=H. Assume that f satisfies the conditions (i),
(ii), (iii). Then

(a) For any x € D(A), there exists a unique contraction solution
of (VI-15) with x(0)=x;

(b) An equilibrium solution x_ (or a periodic solution), if it
exists, is stable;

(c) A stability region of the equilibrium solution X, is D(A)
which can be extended to the whole space H.

Proof. Let A(t)=A+f(t,+). We shall show that A(t) satisfies
all the conditions in theorem VI-1. Since A is independent of t and f
is defined on all of t € RY, it follows that D(A(t))=D(A) which is
independent of t and thus tﬁe condition I is satisfied. By the condition
(iii), for each x € V(A)

||A()x-A(s) x| |=| | £Ct,x)=£(s,2) || < (] |x|])|t-s]| (4] |Ax+E (s,%) | )
which shows that the condition III is satisfied. To show the condition II,
we shall apply theorem V-10 as in the proof of theorem v-11., Let T==A
and for each t > 0 let Tt=I-f(t,-). Then both T and Tt are monotone since
the dissipativity of A implies the monotonicity of T and by the condition
(ii), for any x,y ¢ H

(Ttx-Tty,x—y) = (x-y,x-y) = (£(t,x)-£(t,y),x-y) 2 ||X'Y||2

which implies that Tt is monotone. By hypothesis, R(I+T)=R(I-A)=H and

V(T)=U(A) is demse in H. For each t 2 0, T 1is, by the condition (i),
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defined and demicontinuous (i.e., continuous from the strong topology
to the weak topology of H) on H and is bounded on every bounded subset
of H since the identity operator I also possesses this property, On
setting y=0 in the condition (ii), we have

(£(t,%),%) £ (£(£,0),x) < |[|£(t,0)|] ||x]

. (VI-16)
Hence the dissipativity of A and the relation (VI~16) imply that

el | = [l-motal| 2 Canronn /] 1x] ] 2 T /| x] |-

= (Gxx) = (Ee,x), =)/ | [x|] 2 |x|]-]]£¢e,0)]]
which shows that
IITx+Ttx|[ > oo as lell il NN
Therefore, all the conditions in theorem V-10 are satisfied., It follows
by applying that theorem that R(I-A(t))=R(T+Tt)=H for each t > 0 which
shows condition II with o (t) = 1, Finally, the dissipativity of A and
the condition (ii) imply that for each t>0
(A(t)x-A(t)y,x~y) = (Ax-Ay,x-y) + (£(t,x)-f(t,y),x~y) 20
for all x,y € U(A). Thus A(t) is dissipative for each t > 0 and so all
the conditions in theorem VI-1 are satisfied. Hence for any x ¢ V(A)
there exists a unique contraction solution of (VI-15) with x(0)=x. The
contraction property of solutions of (VI-15) implies that if an equilibrium

solution x_ exists, then for any solution x(t) with x(0)=x ¢ D(A)

||x(t)-xe|| < le-xell for all t > 0
which shows that the equilibrium solution is stable with a stability region
D(A). Since D(A) is dense in H, the extension of the stability region to
the whole space H follows from lemma VI-1, Hence the theorem is completely

proved.
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The above theorem has a counter part for the asymptotic stability
of an unperturbed solution (e.g. equilibrium solution or periodic solu-
tion), we shall show this in the following.

Theorem VI-7. Let the operator A of (VI-15) be densely defined,
strictly dissipative with dissipative constant B and let R(I-A)=H.

Assume that f satisfies the conditioms (i), (ii)', (iii). Then:

(a) TFor any x € V(A) there exists a unique contraction solution

of (VI-15) with x(0)=x and for any solution y(t) with y(0)=y ¢ [,
| x(0)-y (O] ] LGN g || for an1 e 5 0; (VI-17)

(b) An equilibrium solution X, (or a periodic solution), if
it exists, is asymptotically stable;

(c¢) A stability region of the equilibrium solution X is D(A)
which can be extended to the whole space H.

Proof. Let A(t)=A+f(t,+), we shall show that A(t) satisfies all
the conditions in theorem VI-2. As in the proof of theorem VI-6, the
conditions I and III are satisfied. To show the condition II, note that
the dissipativity of A and R(I-A)=H imply that R(I =a A)=H for all a > O
(see lemma V-1), Let Tt= I - a(t)f(t,*). For each t > 0, choose a real
number o(t) such that 0 < a(t) 2 k(t)—l (if k(t) 2 0, choose, e.g., a(t)=1)
then 'I‘t is monotone, for by the condition (ii)!

(T =T ¥, %=y)=(x=y, x=y)=a(t) (£(€,)~£(t,¥),%x-y) 2 (1-a()k(e)) | |x=y|]|%20.

With o(t) so choosen for each t > 0, the operator T=-a(t)A is monotone with

R(I+T)=R(I-a(t)A)=H and with D(T) = U(A) = H. By the condition 1y, T, is
defined and demicontinuous on all of H and is bounded on every bounded
subset of H, and by therdissipativity of o(t)A and the relation (VI-16)

|| TxtT x| =] |-a(e)axrT x| | 2 (- () Ax+T x, )/ | |x|| 2 (xx,x) /| |x}|

= (| x]12=a(t) ECEx )/ x| 2 || |-a(e) | | £CE50) ||
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which implies that ||Tx+Ttx|| +> oo as ||x|| + 4= , It follows by applying
theorem V=10 that for each t > 0 we can choose an a(t) > 0 such that
R(I-a(t)A(t))=R(T+Tt)=H which shows the condition II. Moreover by the
strict dissipativity of A and the condition (ii)', for any x,y ¢ v

(A(£) x-A(1)Y,x-¥)= (Ax=Ay, x=y)+ (£ (t,x)~£ (£,¥) ,x-¥) £ -(B-k(t))]|x-y| &

for each t > 0

which shows that A(t) is strictly dissipative with dissipative constant
B=k(t) for each t > 0. It follows by applying theorem VI-2 that (a) is
proved and the relation (VI-6) holds with 8(s) replaced by B-k(s). Hence

if an equilibrium solution X, exists, then for any solution x(t) with x(0)=

=x e P
t
l|x(t)-xe[l < e-g (B-k(s)ds) | x=x, 11 for all t > O
t
which proves (b) since f(B—k(s))ds; (B-zggk(s))t for any t > 0. Note that
o =

B-zgg k(s) > 0. It also proves that a stability region is D(A). The
ext;nsion of D(A) into T7(A)=H follows from lemma VI-1 which completes the
proof of part (c).

Corollary. Let the operator A of (VI-~15) be densely defined,
strictly dissipative with dissipative constant 8 and let R(I-A)=H. Assume
that f(t,x) is uniformly Lipschitz continuous in x with Lipschitz constant
k < B, that is

£Ce,)-£Ct, ) || 2 k| |x-y]| for all x,y € H (VI-18)
and let there exist a positive nondecreasing function L(r) of r > 0 such
that for all x € D(A)

| 1£Ce,x)=£(s,x) || < L(||x|]) |e-s] for all s,t > O.

Then the results (a), (b), (c) in theorem VI-7 are valid.

127



Proof. We shall show that f(t,x) satisfies all the conditions
(1), (i1}, (1i1). For each t > 0, the condition (VI-18) implies that f
is continuous from the strong topology to the strong topology and that
for any fixed Y, € H

[ECe,x) || < ||f(t,y°)||+ k||x||+k||yo|| for all x € H
which is bounded whenever ||x|| is bounded. Thus the condition (i) is
satisfied. The condition (ii)'also follows from (VI-18) since for each

t 0

v

(f(t,x)-£(t,y),x-y) < |]f(t,x)-f(t,y)|| ||x—y|| < kllx—y||2 x,y € H.
Finally, the condition (iii) follows by hypothesis. Hence all the hypotheses
in theorem VI-7 are fullfilled and the result (a), (b), (c) follows immed-
iately.

Remarks. (a) In theorem VI-6, theorem VI-7 and the Corollary of
theorem VI-7, the condition R(I-A)=H can be weakened by the condition
R(I~aA)=H for some a > O since by lemma V-1 R(I-aA)=H for some a > 0
implies R(I-A)=H. (b) In theorem VI-7, if A is dissipative rather than
strictly dissipative and if the function k(t) appearing in the condition
(ii)' is such that i:g k(t) < 0, the results still hold. (c) The contin-
uity of the real—valaed function k(t) can be weakened to some extent, for
example, k(t) can be discontinuous at a finite number of points on Rt with
the values of k(t) properly defined at these points of discontinunity

(e.g., k(to) = k(to + 0) or k(to)=1/2 (k(to + 0) + k(to - 0)) where to is

a point of discontinuity of k(t)).

D. Semi-linear Nonstationary Equations
Another application of the results obtained in section B is
for the differential equations of the form

dx(t)

T = AL(Ox() + £(t,x(t)) (VI-19)
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where Ao(t) is, for each t > 0, a linear unbounded operator with D(Ao(t)) and
R(Ao(t)) both contained in a real Hilbert space H and f is a given
function from Rt x H into H. Again, on setting A(t)=Ao(t)+f(t,-), the
equation of the form (VI-19) becomes a special form of (VI-1). ' Differen-
tial equations of the semi-linear form (VI-19) have been investigated
rather extensively (e.g., see Browder [1] or Kato [9]), and in [9] it
gives a survey of the results obtained for this type of equation by using
semi-group theory. The object in this section is not to prove any new
theorems on the existence of a solution but rather to deduce some results
from the general theorem developed in section B and to extend these
results for the investigation of the asymptotic stability property of
a solution. In part 1, we introduce some theorems based on the general
results of section B, and in Parts 2 and 3, which are the main object of
this section, we shall discuss some special equations of the form (VI-19).
Because of the hypothesis in these special forms is relatively simple,
it is expected that these results would be more convenient for applications
on certain physical problems, that is, on some concrete partial or ordin-
ary differential equations.
1. General Semi~linear Equations

Consider the operator differential equations of the form (VI-19),
we first show the following:

Theorem VI-8. Assume that Ao(t) satisfies the conditions I and
II (given in section B) and that for each t > O, Ao(t) is dissipative with
D(Ao(t))=v dense in Il. If the operator A(t)=A_(t)+f(t,+) satisfies the
condition III and f satisfies the conditions (i) and (ii) (given in

section C)., Then all the results (a), (b), (¢) of theorem VI-6 hold.
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Proof. Consider the operator A(t)=Ao(t)+f(t,-) as a nonlinear
operator in the equation (VI-1), we shall show that all the hypotheses
in theorem VI-1l are satisfied. Since D(Ao(t))=D is independent of t
and that £ is defined on all of Rt x H, it follows that D(A(t)) =
=D(Ao(t))=v is independent of t and thus A(t) satisfies the condition
I. By hypothesis for each t > 0, Ao(t) is dissipative and by lemma V-1,
the condition II implies that R(I—Ao(t))=H. It follows from the same
proof as in theorem VI-6 that R(I-A(t))=H since for each fixed t >0
we may take Ao(t) as the operator A in theorem VI-6. Note that all the
hypotheses for the proof of R(I-A)=H in that theorem are fullfilled if
we replace A by Ao(t) where t is fixed., Since this is true for each
t > 0, the condition II is satisfied. The condition III is given by
hypothesis., By the dissipativity of Ao(t) and by the condition (ii), we
have for each t > 0

(A(£)x=A(t)y,x=y) = (A (t)x-A_(t)y,x-y) + (f(t,X)-f(t.Y)yx-Y) <0
for all x,y € D, Hence A(t) is dissipative for each t 2 0. By applying
theorem VI-1, the result (a) is proved. The proof of (b) and (c) is
the same as in that of theorem VI-6,

Remark. The assumptions I and III in the above theorem can be
replaced by (I--Ao(t))"1 is strongly continuously differentiable in t
and f is demicontinuous in t. For a direct proof of this theorem see
[9]. It should be noted that the solution obtained in [9] is the so-
called "mild solution" which is the solution of an integral equation
reduced from the differential equation (VI-19).

Theorgm Vi-9, Assume that Ao(t) satisfies the conditions I and

II with U dense in H and for each t > 0, let A (t) be strictly dissipa-
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tive with dissipative constant B(t) where 8(t) is a positive real-valued
continuous function on Rt. If the operator A(t)=Ao(t)+f(t,°) satisfies
the condition III and if f satisfies the conditions (i) and (ii)'with

t
k(t) < B(t) for each t > 0 and [(B(s)-k(s))ds » += as t > =, then all the

results (a), (b), (c) of theoreg VI-7 hold.

Proof. It suffices to show that the operator A(t)=Ao(t)+f(t,')
satisfies all the hypotheses in theorem VI-2, The condition I is obviously
satisfied and by hypothesis the condition III is satisfied. The proof
of the condition II follows the same argument as in the proof of theorem
VI-7. Since for each fixed t > 0, Ao(t) is strictly dissipative with
dissipative constant 8(t), and by hypothesis f satisfies the condition
(i1), it follows that for any x,vy € U

(A(t)x-A(t)y,x-y) =(A_(t)x-A_(£)y,x=y)+(£(t,x)~£(t,y),x-y) <

< -(B(t)-k(t))HX-yH2 for all t > 0
which shows that for each ¢ > 0, A(t) is strictly dissipative with
dissipative constant (B(t)-k(t)). Note that B(t)=k(t) > 0 for all

t > 0. Hence by theorem Vi-2, (a) and (c) are proved with the relation

1im ft

| sga sl

(VI-17) for B-k(s) replaced by B8(s)-k(s). Since by hypothesis
(B(s)~k(s))ds = =, it follows by the relation (VI-17) that i f an
equilibrium solution X exists, it is asymptotically stable which proves
(®).
2, Some Special Semi-linear Equations

The results developed in the preceeding sections of this chapter
are not easy to apply for partial differential equations. However, a
number of physical and engineering problems are fromulated by a system
of partial differential equations which can be reduced to the simplier
form

-“—"—c-(l%l = Ax(t) + £(t,%) (VI-20)
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where Ao’ which is independent of t, is a linear unbounded operator
with domain U(Ao) and range R(Ao) both contained in a real Hilbert
space H and f is a given function from RY x H into H. Since (V1-20)

is a special form of (VI-15) with A=Ao a linear operator, the results
obtained in section C are directly applicable. Note that the equation
(VI-20) is an extension of the equation (V-24) where f(t,x)=f(x). The
object in this section is to deduce some results similar to those in
section V-C, which would be easier to apply for a certain class of non-
stationary partial differential equations.

According to theorem III-14, if4Ao is the infinitesimal genera-
tor of a contraction semi-group of class Co’ then Ao is densely defined,
dissipative and R(I—Ab)=H. Hence the following theorem is a direct
consequence of theorem VI-6.

Theorem VI-10, Let Ao be the infinitesimal generator of a

(1inear) contraction semi-group of class Co' Assume that f satisfies
the conditions (i), (ii), (iii). Then all the results (a), (b), (c)
of theorem VI-6 hold.

As to the asymptotic stability of a solution of (VI-20), we have
the following theorem which is a special case of theorem VI-7.

Theorem VI-11l., Let Ao be the infinitesimal generator of a

(1inear) negative contraction semi-group of class Cj with the contractive
constant 8. Assume that f satisfies the conditions (i), (ii)', (iii).
Then all the results (a), (b), (c) of theorem VI-7 hold.

Proof. Since Ao is the infinitesimal generator of a negative
contraction semi-group of class Co, it is densely defined, dissipative
and R(I-A)=H. By applying theorem V-3 for A=A as a speclal case, A

is strictly dissipative with dissipative constant B since the dissipa-
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tivity of Ao in the sense of definition V-3 for a linear operator
coincides with the dissipativity ofAo in the ordinary sense, Hence
all the results (a), (b), (c) follow from theorem vVi-7.

Corollary. Let Ao be the infinitesimal generator of a (linear)
negative contraction semi-group of class Co with the contractive constant
B, and let f be uniformly Lipschitz continuous on Rt x Hwith k¥ <B
where k is the Lipschitz constant with respect to x, Then all the
results (a), (b), (c) of theorem VI-7 hold,

Proof. We show that all the hypothesis in the corollary of
theorem VI-7 are fulfilled. As in the proof of theorem VI-11, AO is
densely defined, strictly dissipative with dissipative constant 8 and
R(I—Ao)=H. The uniform Lipschitz continuity of f on RY x H implies
that the relation (VI-18) holds (with k <B) and that there exists a

positive real number L such that for any x € li

| [£(t,x)-£(s,x) || < L|t-s] for all s, t > 0
which implies that the condition (iii) is satisfied. Hence by the
corollary of theorem VI-7, all the results in theorem VI-7 hold.

So far in this section, we have assumed that Ao is the infinite-
simal generator of a contraction semi-group of class Co (The conditions
imposed on Ao(t) in theorems VI-8 and VI-9 imply that for each t >0,
Ao(t) is the infinitesimal generator of a contraction semi-group of
class Co (theorem III-14)). 1In the remainder of this section, we shall
consider Ao as an unbounded closed linear operator. (The infinitesimal
generator of a semi-group is always closed). Before looking into this
type of operator, let us make Some observations about the equation (VI-20).

Suppose that there exists an equilibrium solution X, of (VI-20). Let
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z(t) = x(t)-xe. On substituting x(t) by z(t)+xe in (VI-20), we have

9%%21 = A z(t) + F(t,z(t)) for all t > O

where

F(t,z(t)) = Ax + f(t,z(t) + xe).

A X, + f(t,xe) =0 for all t > O
it follows that F(t,0) = 0, Moreover, if f satisfies the conditions
(1) (ii) (dii) (oxr (1), (ii)', (iii)), so does F with possibly different
L(||{x|]) in the condition (iii). To show this, note that the trans=-
lation mapping from x to x+xe is a continuous one-to-one mapping from
all of H onto H so that F is defined on RY x H into H. For each t > 0
and any z,(t), z,(t) ¢ H
(F(t,zz(t))-F(t,z (£)),u) = (f(t,z (t)+xe)—f(t,zl(t)+xe),u)
for every u € H which implies that F is continuous from the strong
topology to the weak topology of H and is bounded on every bounded
subset of H since f has these properties. Note that zl(t) > zz(t)
if and only if zl(t)+xe - zz(t)+xe and that ||z(t)|‘ is bounded if and
only if |lz(t)+xe|| is bounded where x is a fixed element in H. Thus
F satisfies the condition (i). For any x,y € H
(F(t,x)-F(t,y),x~y) = (f(t,x+xe) - f(t,y+xe),(x+xe) - (y+xe))

which shows that F satisfies the condition (ii) if f does. In case
f satisfies the condition (ii)', so does F since the above equality
implies that

(F (6, 00-F(t,3) ,xmy) < k()] | Gebx )= Grx) |1 = k(o) | |-y 1.
Finally, if f satisfies the condition (iii), then by the definition of

F for any z ¢ D(Ao)

134




| |F(t,2)-F(s,z)|| = ||f(t,z+xe)-f(s,z+xe)|| < L(||z+xe||)|t—s

(1| |A (zx )+E (s, z4x ) [ |) = L] [zt [ D | t-s| (4] |A z+F(s,2) [ ]) <
s L=+ [ D ] e-s ] [A z4F (s, 2) | )
since L(||z+xe|l) is nondecreasing (which implies that L(liz+xe!|) <
< L(l|z||+||xe||))- The function Ll(||z||)=L(||z||+||xe||) is a positive
nondecreasing function of ||z|| > 0, for if ||zl|| < ||22|| then

||zl||+||xe|| S ||22||+||xe|| which implies that

).

Lz |1+ x| 1) 5 Ll Lz, |1+ 1, |

The positivity of L. follows directly from the positivity of L. This

1
completes the proof,
It follows from the above observation that if an equilibrium
solution of (VI-20) exists, we may assume that f(t,0) = 0 and thus the
investigation of the stability property of an equilibrium solution is
the same as that of the null solution.
Another observation about equilibrium solutions of (VI-20) is

the following theorem.

Theorem VI-12, Let H be a real Hilbert space, and let Ao be

a strictly dissipative operator from H into H with the dissipative
constant B, i.e.,
(A x,x) < -Bl|x||2 for all x ¢ D(Ao).

Assume that for any x,y ¢ D(Ao)

(£(t,x)=£(t,y),x~y) < k(t)llx—yll2 for all t > 0
where k(t) is a real-valued function with k(to) < B for some t_ > 0.
Then an equilibrium solution X, of (VI-20), if it exists, is unique. 1In
particular, if £(t,0)=0 for all t > 0, then the null solution is the

only equilibrium solution.
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Proof. Let Ve be an equilibrium solution., By (VI-12)
one + f(t,xe) =0 and Aoye + f(t,ye) =0 for all t >0
which implies that
Ao(xe—ye) + f(t,xe) - f(t,ye) = 0,
Hence, for all t > 0
2
0 = (A (x=vg) X =y IH(E(t,x )=F(t,y ) yx =y) < =(B=k(t)) | [x -y |1

e
(t ) > 0 for some t_ > 0, it follows from the above
o o=

inequality that ‘Ixe-ye|l = 0 which proves the uniqueness of Koo

Remark. The above theorem remains true if A0 is dissipative
and the function k(t) is negative for some to > 0 since under this
condition, we have 0 < k(t)||xe—ye|| for all t > O which is a contra-
diction unless ||xe-ye]|=0 since k(to) < 0,

Corollary. Under the hypothesis in theorem VI-11 (or in theorem
Vi-7) if an equilibrium solution exists, it is unique.

The uniqueness of the equilibrium solution in theorem VI-11 (or
in theorem VI-7) is also a direct consequence of the negative contraction
property of the solution. For, if X, and y, are two equilibrium solutions

then since x(t)=xe and y(t)=ye for all t >0

—Btl |X

|lxe-ye|[ e e—ye|| for all t > 0

which is impossible unless Xy = Voo
Now we return to the equation (VI-20) where Ao is an unbounded

closed linear operator. In analogy to theorems V-15 to V-17, the

following theorems may be regarded as their respective extension.

Theorem VI-13, Let Ao be densely defined, closed and strictly
dissipative with dissipative constant B. Assume that Ag is the closure
of its restriction to U(Ao){)U(Ag) and that f satisfies the conditions
(1), (i1)', (iii) where A% is the adjoint operator of A . Then all the

results (a), (b), (c) in theorem VI-7 hold.
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Proof. It suffices to show that R(I—Ao)=H since all the other
conditions in theorem VI-7 are fulfilled by hypothesis. Note that
(VI-20) is a special form of (VI-15) with A;AO. -But is has been shown

in the proof of theorem V-15 that R(I—Ao)=H. Hence the results follow.

Theorem VI-14. Let Ao be an unbounded self-adjoint operator
from part of H to H and let it be strictly dissipative with dissipative
constant B. Assume that for each t > 0, f is uniformly Lipschitz con-
tinuous in x with Lipschitz constant k(t) where k(t) is a positive con-

sup k(t) < B and assume that for each

tinuous function on Rt satisfying >0

x € D(A), £ is uniformly Lipschitz continuous in t with Lipschitz
constant L(||x||) where L(||x||) is a positive non-decreasing function
of ||x||. Then all the results (a), (b), (¢) of theorem VI-7 hold.

Proof. Since the self-adjoint operator Ao is densely defined,
closed and equals its adjoint operator Ag (in particular, D(Ao)=D(Ag)),
it follows that Ao satisfies the requirements in theorem VI-13. By

hypothesis, for each t > 0

FECe,x)-£Ct,y) | | < k(t) ] |x=y|| for all x,v € H (Vi-21)
which implies that f satisfies the conditions (i) and (i1)'. This is
due to the fact that for each t > O, (VI-21) implies that f is a
continuous in x (from the strong topology to the strong topology of H)

and that for a given Y, € H

e, ] 2 e,y ) e Haxl [+@ [y [
Hence for each t > 0, ||f(t,x)|| is bounded whenever ||x|| is bounded

since k(t) < 8 and ||£(t,y )|| 1s bounded for each t (see (VI-22) below).
This proves the condition (i). Condition (ii)' follows also from (VI-21)

since for any x, y € H

2
| CECt,x)~£Ct,y),x=9) | < ||ECe,x)-£¢e, || Tx-yl] £ k(&) ||x=y]|

137



for all t > 0. By the assumption of uniform continuity of f in ¢,
for each x € U(Ao)
| 1£Ct,x)-£(8,x) || < L(}|x|])|t-5] for all s,t > 0 (VI-22)
which shows that f satisfies the condition (iii). Hence the theorem
is proved by applying theorem VI-13.

Remark. It is obvious that the assumptions on f can be weakened
by assuming that f satisfies the conditions (i), (ii)', (iii). On the
other hand, a stronger assumption is that f is uniformly Lipschitz
continuous on RT x H, that is, k(t) = k < 8 and L(||x|[|)=L>0.

It can happen that the given linear operator Ao of (VI-20) is
not self-adjoint in the original space H=(H,(+s+)) but it is possible

to find an equivalent inner product (¢s+). such that AO is self-adjoint

1

in the space Hl=(H,(-a-)1). In such a case, we have the following

theorem which is an extension of theorem VI-14.

Theorem VI-15. Let Ao be a densely defined linear operator from
= (d,(es+)) 1into H, and let f satisfy the conditions (i) (iii) in H.

If there is an equivalent inner product (e¢se). such that AO is self-adjoint

1
and is strictly dissiaptive with the dissipative constant B with respect
to ('a')l, and such that for any x,y € H

(f(t,x)—f(t,y),x-y)1 < k(t)l|x-y||i for all t > O (VI-23)

sup

£20 k(t) <8,

where k(t) is a continuous real-valued function on RT such that
Then, (a) For any x € D(Ao), there exists a unique solution x(t) of
(VI-20) with x(0)=x. (b) If an equilibrium solution X, exists, it is
asymptotically stable. (c¢) A stability region of X, is D(Ao) which can
be extended to the whole space H in the sense of lemma VI-1.

Proof., Consider A  as an operator from the space Hl=(H,(°’°)1)

into Hl. Since Ao is self-adjoint in H it is densely defined, closed

1’
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and D(Ao)=D(Ag) in Hl. It follows by hypothesis that Ao satisfies the

conditions in theorem VI-13 where the underlying space is H The

1

continuity of f being dinvariant under equivalent norms together with

the relation (VI-9) imply that if f is demicontinuous in H, it is

demicontinuous in Hl' Thus f satisfies the condition (i) in the Hl-

space since by hypothesis, f possesses this property in the H-space.

Note that the boundedness of f is also invariant under equivalent norms.

Moreover, by the condition (iii) in H and the equivalence relation (VI-7)
I|f(t,x)—f(s,x)||l§ Y ECE,x)=£(8,x) || < yL(||x|])];—Sl(l+||on+f(s,x)||)

< v LT x| le-s] a67H A e (s10 || )

)

since |]x|]| < 6-1||x|[1 and L(]|x||) is nondecreasing. Let A = max(1,8
and set L1(||x||1)=ykL(6-1||x|[1), then L, is a positive nondecreasing
function since L is. Hence

||f(t,x)-—f(s,x)||l < Ll(l|x|l1)|t-s|(1+||A0x+f(s,x)||l)

which shows that the condition (iii) is satisfied with respect to |

5
By applying theorem VI-13, all the results (a), (b), (c) of theorem

VI-7 hold in the space Hl' Since for any x ¢ D(Ao), there exists a unique

contraction solution x(t) of (VI-20) with x(0)=x in Hl, it follows by
lemma VI-3 that x(t) is also the unique solution with x(0)=x in H, Thus

€a) is proved. Since the relation (VI-17) holds in H., and by lemma VI-3

1

if X, is an equilibrium solution in H, it is also an equilibrium solution

1
in H, It follows that for any solution x(t) in H with x(0)=x ¢ D(Ao)

Hx(t)-xell ; 6-1||x(t)-xe||l ; 6—1e-£28—k(s))dsllx_}(e||1;

t
;(Y/d)e_£ (B—k(s))dsl|x-xe|| for all t > 0
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which shows that the equilibrium solution X, is asymptotically stable
since i:g k(t)<B implies iiz ft(S-k(s))ds= +~, The above inequality
is true—for any X € D(Ao) shozing that a stability region is U(Ao).
By lemma VI-1, this region can be extended to the whole space since
D(Ao) is dense in H. Hence the theorem is completely proved,

It is clear that theorems VI-13 to VI-15 are particularly useful
for the class of partial differential equations which can be formulated
in the form of (VI-20) where Ao is a concrete partial differential
operator defined in a suitable Hilbert space H into H and f is a (non-
linear) function defined on Rt x H into H. It happens often that the oper-
ator Ao reduced from a partial differential operator is a densely defined
closed operator or its extension is a closed operator (i.e., Ao is clos-
able). Theorem VI-14 and VI-15 suggest that if A is self-adjoint in H
or if an equivalent inner Product can be found such that Ao is self-

adjoint in the equivalent Hlilbert space H then the strict dissipativity

1°
imposed on Ao in these theorems is likely to give some stability criteria
for the coefficients of the partial differential operator and possibly
including the parameters involved in the boundary conditions. On the
other hand, in certain design or control processes, the function f itself
or the parameters involved in this function can be varied so that the
conditions imposed on f such as (VI-22) and (VI-23) are also likely to
yield some criteria among this class of functions or among the parameters
involved in the given function. In practical problems, these criteria

are often in terms of physical properties, dimensional parameters, control
functions, etc, which are originated from the derivation of the differen-
tial équations describing this system. Thus they are not only important

for the design or control prupose but also gives some interpretation of

the physical meaning about the system.
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3. Ordinary Differential Equations
In case the operator Ao in the equation (VI-20) is a bounded
linear operator on H to H, we can write (VI-20) as an ordinary differ-

ential equation of the form

428 = £, x(t)) (VI-26)
where £(t,x) is a function from Rt x H into H. Since the equation

(VI-24) is also a special form of (VI-15) with A = O which is densely
defined, dissipative, and R(I-0)=H, we have immediately the following

theorems,

Theorem VI-16, Let f satisfies the conditions (i), (ii), (iii)

(given in section C). Then, (a) Tor any x € H, there exists a uniaue
contraction solution of (VI-24) with x(0)=x, (b) If an equilibrium
solution x, exists, it is stable. (c) The stability region is H,

Theorem VI-17. If f satisfies the conditions (i), (ii)', (iii)

sup

with 8=0 (i.e., £>0

k(t)<0), then the results (a), (c) of theorem VI-16

hold, and in addition: (b)' For any solution y(t) with y(0)=y € 1l

x@-y(o || < o ¥&E | xy||  for ant ¢ 5 o
Thus, if an equilibrium solution X, exists, it 1s asymptotically stable,

The above two theorems can be proved directly by considering the
operator A(t) of (VI-1) as f(t,*) and show that the conditions in theorem
VI-1 and theorem VI-2 are satisfied respectively., To see this, we first
note that A(t)=f(t,+) satisfies the conditions I and III by the assumption
(i) and (iii) respectively. To show that A (t) satisfies the condition II,
let T=I1 and Tt=-f(t,-). By following the proof of theorem VI-6, it can
easily be shown that all the conditions in theorem (V-10) are satisfied

which implies that for each t > 0, R(I-A(t))=R(I-f(t,.))=H, The dissipa-
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tivity of A(t) follows from the assumption (1i). Hence all the results
of theorem VI-16 follow by applying theorem VI-1, A direct proof for
theorem VI-17 can similarly be showm.

It should be noted that the existence and the uniqueness of a

solution of (VI-24) do not require that k(t) b

©®
3
{3

ri fa1y
v [

However under this condition, the asymptotic stability property of a
solution can not be ensured.

< Theorem VI-16 and VI~17 remain true if an equivalent inner product
(°n°)l can be found such that f satisfies respectively the conditions (ii)
and (ii)' with respect to (.,.)1. In fact, we have the following theorem
whose proof follows that of theorem VI-15,

Theorem VI-18, Assume that f satisfies the conditions (i),

(iii) in the Hilbert space H=(H,(+»+)). If there exists an equivalent

inner product (es.), such that

1
(f(t,x)—f(t,y),x—y)l < k(t)||x—y||§ for all t >0

where k(t) is a continuous real-valued function defined on Rt with

sup

£>0 k(t) < 0, then the results (a), (b)', (c) of theorem VI-17 hold

except the contraction property of the solutions. If k(t)=0, (b)'
should be replaced by (b) in theorem VI-16,

In theorems VI-17 and VI-18, if an equilibrium solution X, exists,
it is unique. A weaker condition for the uniqueness of an equilibrium
solution can be obtained by applying theorem VI-12., We show this in the
following.

Theorem VI-19. Assume that for any x,y € H

(£(t,0)-£(t,y),x-y) < k(t)||x-y||®  for all t > O

where k(t) is a real-valued function with k(to) < 0 for some t, 2 0.
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Then an equilibrium solution X, if it exists, is unique. In particular,

if £(t,0)=0 for all t > O, then the null solution is the only equilibrium

solution,

Proof. Let Ve be any equilibrium solution. By (VI-12)

f(t,xe) = 0 and f(t,ye) =0 for all t >

v
o

which implies that

2
0= (f(t,xe)—f(t,ye),xe-ye) < k(t)llxe-ye|| for all t > O.

But k(to) < 0, the above inequality is impossible unless lee-yel|=0.

Thus the uniqueness of X, is proved.
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VII. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

The stability and existence thoery of the operational
differential equations developed in Chapters IV, V, VI deals with
unbounded and nonlinear operators which are extensions of certain
concrete linear and nonlinear partial differential operators res-
pectively. Thus the solutions of the operational differential equa-
tions are closely related to the concept of generalized solutions |
(distribufion solutions, weak solutions, etc.) of boundary-value
problems for partial differential equations. By a suitable choice
of a function space (such as LZ(Q), Hm(Q)), the results obtained
in the previous mentioned chapters are directly applicable. In
this chapter, we do not intend to solve general nonlinear partial
differential equations but rather to apply some of the results
obtained in Chapters IV, V, VI to certain semi-linear partial differ-
ential equations (which occurs often in physical problems) in order
to illustrate some steps in applying the theorems developed for

operational differential equations.

A. Elliptic Formal Partial Differential Operators
It is known that a linear partial differential operator can
be, under suitable conditions, formulated as a linear operator in a
function space such as Banach space or Hilbert space. In this section,
we shall formulate an elliptic partial differential operator as an
unbounded linear operator in the real Hilbert space LZ(Q). Before
giving a formal definition of an elliptic partial differential opera-

tor, it is convenient to use the following conventional notations:
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x=(x1,x2,---,xn) and £ =(£l,€2,--~,€n) denote variable points in RD;

n

|a| =j§l aj where o = (al,a2,~--,an) whose components are non-negative

i s p% = p.1p02...0%n wh -2 ' i

ntegers; = D;"D,%«+D N where Dj =T for j=1,2,+0+,n; if |a|=0
J

the operator D% is defined to be the identity operator; £” denotes the

expression gal gaz veo gan and aa(x) denotes the expression aalaz"'an(X)'

With these notations, we first give the following definition of a formal

partial differential operator.

Definition VII-1, Let the operator

L=] a (x)
lalgp © ’

where p is a positive integer and the coefficients aa(x) are infinitely
differentiable functions in an open set Q=R". Then L is called a formal

partial differential operator. The differential operator

Lx(e) = ] (—1)'“‘n°‘<aa<x)<->>
el zp

which is also a formal partial differential operator is called the
(real) formal édjoint of L. If IL=L*, then L is said to be formally
self-adjoint,

Now we give a formal definition of an elliptic differential
operator,

Definition VII-2., Let

L = Z a (x) p®
lalsp @

be a formal partial differential operator of order p defined in a domain

2 of the Euclidean space R®. If for each non-zero vector £ in R"

) a (%) £ 40 X e Q,
la|=p
then the operator L is said to be elliptic. Thus, the requirement of

ellipticity for a partial differential operator is the analogue of the
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condition that the leading coefficient should be non-vanishing.
For the case of second order elliptic partial differential

operator (i.,e., p=2), the operator L can be written in the form

; £, 2
L= a,, (X)==————+ ) b, w1+ c(X)
i,j=1 BTy o 1Ry
with the requirement that for any non-zero vector £ in Rn
)
a,.(x) g.£, #0 X e Q,
i,9=1 17 11

The elliptic partial differential operator L can be formulated as

an operator in LZ(Q) in different ways. TFor example, we may define

the operator T to be the restriction of L with domain D(T)=C:(Q), the
set of all infinitely differentiable functions with compact support

in 8. T is a densely defined linear operator from LZ(Q) into LZ(Q)
since C:(Q) is dense in LZ(Q) (see theorem II1I-17), The domain of

T is narrower than necessary; in the above definition we could replace
C:(Q) by Cg(ﬂ) since we need only p-th order derivatives in constructing
L, there by obtaining an extension of T. We can also define a larger
extension T1 of T by admitting in its domain all functions u ¢ LZ(Q)
such that u ¢ CP(Q) and Lu ¢ LZ(Q) (here u need not have compact support).
Since T is densely defined and T<=T1, it follows that Tl is densely
defined and so both T* and Ti exist, The question may arise that if

the formal partial differential operator L is self-adjoint, that is,
1=L*, whether or not T* (or Ti) is also self-adjoint. To answer this
question for the case of the operator T, we state the following theorem
whose proof can be found in the book by Dunford and Schwartz [6].

Theorem VII-1l. Let L be an elliptic formal partial differential

operator of even order 2p defined in a domain Qo in R". Suppose that L
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is of the form

(VII-1)

and that

CSHLAND)

4 XxeQ, EecRY, £4#0.
ai=2p

o (VII-2)

aa(x) £* > 0,

Let Q@ be a bounded subdomain whose closure is contained in Qo. Suppose
that the boundary of Q is a smooth surface 39, and that no point in 3 Q
is interior to the closure of @, Let T and% be the operators in the
Hilbert space LZ(Q) defined by the equation

A
D(T)=D(T) = {

0O = —
L L ue C(Q); uv(x) = 3 ulX)=.-o 35 u(x)=0, x £3Q}
N A
Tu = Lu, Tu = L*u, u e D(T) = D(T)

k . . e N
where av denotes the k-th normal derivatives on 3. Let A and A be the

closure of T and G, respectively., Then (1) A* = K and (ﬁ)* = A, (i1) o(a),
the spectrum of A, is a countable discrete set of points with no finite
limit point. (dii) If X ¢ o(A), ()\I-A)"l is a compact operator,
Corollary. Under the hypotheses of theorem VII~-1 and, in addition,

L is formally self-adjoint so that L=L*, Then (i) the operator A is self-
adjoint, A=A*; (ii) The spectrum o(A) is a sequence of points {An}
tending to @, and for X ¢ o(A); R(A;A) is a compact operator.

Remark. Suppose that the condition (VII-2) in theorem VII-1 is

replaced by the condition

-1nP ) (VII-2)"

la|=2p

aa(x) £2 <0, Xe Qo’ £ ¢ Rn, £E40

A
then -L satisfies the hypothesis in the above theorem in which -T, -T,

A

A
-A and -A would be the operators
are the operators defined in the

L is formally self-adjoint so is

A
associated with =L where T, T, A and A
theorem for the operator L. Thus if

-L and by applying the above corollary
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-A=(-A)* which implies A=A*, Hence theorem VII-1l and its corollary,
on the part of self-adjointness of A, remains valid if the condition
(VII-2) is replaced by the condition (VII-2)',

It follows from the above theorem that under suitable conditions
on the leading coefficients of L and a smooth boundary condition on §,
the elliptic partial differential operator L can be formulated as a
linear operator T in L2(Q) such that if L is formally self-adjoint then
the closure of T is also self-adjoint. This formulation enables us to
apply some of the results developed in Chapters V and VI for certain
semi-linear partial differential equations.

It is known that [6] under the conditions of the above theorem
and if Q is a bounded open set contained in Qo then the Garding's
Inequality holds, that is there exists constant K < « and k > 0 such
that

(Lu,u) + K(u,u) 2 k‘|u||ﬁ) u € C:(Q)

where | ! is the norm of the Hilbert space HE(Q) .
P

B. Semi~linear Partial Differential Equations

The formulation of a formal linear partial differential operator
as a linear operator in LZ(Q) in the previous section enables us to
establish some existence and stability criteria among the coefficients
of the formal differential operator for a certain class of stationary and
non-stationary partial differential equations. In this section, we give
some applications of the results obtained in Chapters IV, V and VI to
a class of linear and semi-linear partial differential equations which
can be served as an illustration of some steps in applying the theorems
developed for operational differential equations, In the following, the

first simple example of a linear partial differential equation gives a
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fairly detailed description of the application from which some more

general equations or non-zero boundary conditions can easily be obtained,

Example VII-1l. Consider the simple case of the linear partial

differential equation

2
du _ 3 u su
-5-t— = a(X) a-z-"‘ b(X.) X + C(X)u X € (0,1) (VII-3)
with the boundary conditions
u(t,0) = u(e,1) = 0 (t>0)., (VII-4)

Assume that the coefficient a(Xx) is positive (or negative) on [0,1]
and that a(x), b(x), c(x) are all infinitely differentiable functions

in an open interval Io containing [0,1]. Then the linear operator

32 9
L = a(X) ——2 + b(x) -ﬁ‘f’ c(x)
ax

is a formal partial differential operator defined in Io' Moreover, by

the assumption a(x) > 0 for all x € [0,1] we have

1

—a(x)g2 <0 for all £ ¢ R with £ # 0 and Xx ¢ [0,1].

It follows that -L is an elliptic partial differential operator. The

formal adjoint operator of L is given as

2
L*(+) = 25,@00 () = 2 G () + (0 ()
X

which is also an elliptic partial differential operator. It is easily

shown by a simple calculation that equation (VII-3) can be reduced to

the form
§-§ = ;1—%-5 —g;(- (Px) %%) + c(X)u (VIII-3)'
where X
o1 @/aE)
q(x) = (a(x)) = eXo (x_ e [0,x] fixed)
x -—
[ (e /ae))de (VII-3)
P(x) = eXp = a(x)q(x).
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Let us seek a solution in the real Hilbert space L2(0,1) in which the

inner product between any pair of elements u, v € L2(0,1) is defined by

1
(u, v) = fu(x) v(x) dx. (VII-6)
(o]

Define the operator T in LZ(O,l) as the restriction of L on C:(O,l)

N

and T the restriction of L* on C_ (0,1), that is

o
(T) = U(%) = C: (0,1); Tu=Lu and $u=L*u, u e D(T).
Let A and ﬁ denote the closure of T and @ respectively (T and % are
closable). Then V(A) is dense in 12(0,1) since D(A)>D(T) = C:(O,l)
which is dense in L2(0,1). Thus A* and (2)* both exist., In general, T

is not self-adjoint with respect to the inner product defined in (VII-6)

as can be seen by "integration by parts" of the integral

1
(u,Tv) = fu(x) T v (x) dx u, v e D(T)
(o]

which, in general, is not equal to (v, Tu) for all u,v € P(T). However,

by defining the scalar functional V(u,v) by

1
V(u,v) = (u,qv) = fu(x) q(x) v(x) dx (VII-6)"
(o]

where the function q(X) is the known function given in (VII-5) then

V(u,v) defines an equilvaent inner product ("‘)1 such that

(Tu,v)1 = (u, Tv)1 for all u, v € D(T).
To see this, define

(u,v)l = V(u,v)

then it is obvious that (-.-)1 possesses all the properties of an inner
1

product, Since (u,u)1 = (u,qu) = f quzd&, it follows that
o

i 12
(G qe) [ul1? < THul1? < (oraxy a0 ull

which implies that (+s.), and (*»+) are equivalent. Notice that q(x)>0

1
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and is continuous over the closed interval [0,1] so that it actually
attains its maximum and minimum values bounded away from zero and <.
For any u, v € U(T), on integrating by parts and taking notice that

the boundary conditions are satisfied for any u ¢ D(T) we have

9

v .
sz'(P 329 + cv]dx

1 -1
(u,TV)l = (U,QTV) = f UQ[q
[o]

X 9X

1
u v 3 Ju
= f(-P + cquwv)dx = £ [v 52-(P 329 + cquv]dx = (Tu,v)1

A
which shows that T=T. It follows by applying theorem VII-1 and the

A
remark following that theorem that A=(A)*=A%* which shows that A is
self-adjoint in the equivalent Hilbert space L (0,1) equipped with the

inner product (+s-) Moreover, the above equality implies that for

l.
any u £ U(T)
1 Ju 2 2
(u,Tu)1 = - I[P(EY' - cquldx = - f [a q( ) -cqu ]dx .
On setting u;= q1/2 u then ||u1!|=||ul[l and by an elementary calculation
we have
Jdu auz b )2 2
EE. 2 = ——l 2 - l —-a! l —a -7
aq (33 alz) 5 (b-a') ax + u] (VII-7)
v = 4 :
where a' = = a(x). Hence, integrating by parts and using the well
known inequality
1 1
£ 6%%)2 dx > n2 { u2 dx (VII-8)

which is valid for any u(x) satisfying the condition (VII-4), we have
1 3u 2
= - 32 4 & proany 4+ LG=aD” 2
(u,Tu), £ la)" + G ('-a") + 5~~~ - ¢) ujldx

1

-t +1-am+d (3-'—:——)—- clu] dx g - ]ul |2
(o]
where
#min 0<x<1 a(x)
= Ogigl [x a o +— (b' (0-a" (D) + ¢ (b(z)&? ()" -c(x) J.
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It follows that if B=0 or R>0 then T is dissipative or strictly dissipa-
tive, respectively, with respect to (os-)l. The dissipativity or strict
dissipativity of T implies the dissipativity or strict dissipativity,
respectively, of A. To see this, let u € V(A) then by the construction
of the closure of a closable operator there exists a sequence {un}CZU(T)
such that u_ » u and Lim Tu exists and equals Au (see the definition
n n> n
of closable operator following theorem III-1)., Hence by the continuity

of inner product, we have

11 2 2
< om CBLHu D = =81 ul 17

_ 1lim )
n’l = nre

(Au,u)1 = (Tun, u

n->ree

which shows the dissipativity and strict dissipativity of A. Therefore,
by applying theorems V-17 and V-13 with f = 0 we have the following results,

Theorem VII-2 . Assume that the coefficients a(x), b(X) and c(x)

of (VII-3) are infinitely defferentiable over any open interval Io con-

taining [0,1] and that a(X) is positive on [0,1]. If the condition

. ' 2
g = min [112amin +% (b'(X)—a"(x))"% (b)=a ()" c(x)] 20

0<x<1 a(x)
(VI1I-9)
min d d2
i = ' Fo i n B —
is satisfied where a in = 0<x<1 a(x) and a'(x) 39X a(x), a"(x) dxz a(x),

then for any initial element uo(x) e V(A) there exists a unique solution
u(t,Xx) in the sense of definition VI-1 with u(O,X)=uo(x). Moreover, the
null solution of (VII-1) is stable if B=0 and is asymptotically stable if
B > 0 and in the later case the null solution is the only equilibrium

solution,

As an example of the above theorem, take a(X) =-% s D(X) =j%.x,

c(x) = (x2 +J%9 where R is a positive constant to be determined, then
R
min (w21 1. 2.2 2, 2 1
o +=2+>R EXN - +D] =—-
4 R R

1
0;x__<_1['§ JR JR ﬁ'

Hence B > 0 if 0 < R < ﬂa which shows the same result as given in [3].

g =

=
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Remark: The solution u(t,Xx) in theorem VII-2 is in fact a

solution of (VII-3) in the strong sense i,e., dule,X) = Au(t,X) in the

dt
norm topology as can be seen by apnlying the corollarv of theorem III-14,
liowever, in the case of semi-linear equations theorem IIT-14 and its

corollary do not apply. Thus, we shall assume that any solution in the

following discussion is in the sense of definition VI-1,

Example VII-2, Consider the partial differential equation

2
M a00 T4 b)) Bk c)u + £ (VII-10)
ot axz X

with the boundary conditions u(t,0)=u(t,1)=0 where a(x), b(Xx), c(x)
are the same as in theorem VII-2 and f is a nonlinear function defined
on L2(0,1) to L2(0,1). According to theorem V-17, if f is continuous

2 2
on L7(0,1) and is bounded on bounded subsets of L°(0,1) such that

(f(U)-f(V),u-V)l

A

kl||u-v||i with k) < B, u,ve L2(O,1)

where (n-)1 is the equivalent inner product defined in (VII-6)'and R
is given by (VII-9), then all the results in theorem VII-2 with respect
to an equilibrium solution, if it exists, remain valid. In particular if
£(0)=0, the null solution is exponentially asymptotically stable,
To illustrate the above statement take, for example, the function
2

f(u) = k —

ol > 0). (VII-11)
AT+u

It is obvious that f is continucus on L2(0,1) (in the strong topology)

and is bounded on L2(0,1). By the definition of (.,.)

2

1 2
(f(u)-—f(v),u—v)l = f k( ; 5 - zv 2)q(u—-v)dx
o AT+u AV

- 1 4
1 in (VII-6)

1
= kA2 [ utv (u-v)? ax <
2 2...2. 2.4 =

o (ATHu) (AT

A2 max |k (u()+v(x)) |

=0 2?0y AR o)

[ fumvl 12,
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It is easily shown that for any real number u,v

lutv] PR (VII-~12)

(A2+u2) (A2+v2) | 23]

which implies that
k 2
(f(u)-f(V),u-v)l < |—T| ||u—v||l

It follows that if |%¢;B then the existence and uniqueness of a solution

for any initial element uo(x) e D(A) are ensured, Moreover the null

solution is exponentially asymptotically stable with stability region D(A).
The above example gives general conditions on the coefficients

of the partial differential operator L and on the nonlinear function f

which depends on u. In case f is a function of both t and u, additional

restriction on f is necessary. These conditions are given as an example,

Example VII-3, Consider the non-stationary semi-linear equation

2
-g-‘i = a() XL 4 bx) Es cx)u + £(E,0) (VII-13)
t aXZ X

with the same boundary conditions u(t,0)=u(t,1)=0 where a(x), b(x) and
c¢(x) remain the same as in example VII-1, According to theorem VI-15,
if f satisfies the conditions (i) and (iii) given in section C of Chapter

VI and if there exists a continuous real-valued function k(t) on R+=[0,w)

sup

£>0 k(t) < B where 8 is given by (VII-9) such that for any u,v € L2(0,1)

with
(£(t,w)=£(6,v) u=v) ) £ k(O | [u-v] 2 (t > 0) (VII-14)

then for any initial element uo(x) e U(A) there exists a unique solution
u(t,x) with u(O,x)=uo(x), and if an equilibrium solution exists, it is
unique and is asymptotically stable.

Take, for instance, the function

ku2

f(t,u) =
(A2+u2)(cl+c2t)

(cl,c2 > 0).
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It is obvious that f is defined on R' x LZ(O,l) into LZ(O,l) and is
such that for each t > 0 it is continuous on L2(0,1) (in the strong
topology) and is bounded uniformly which implies that f satisfies
the condition (i) in theorem VI-15. Tor any u(x) € U(Ao) and any
S,t > 0

kuz cz(s—t) J‘ .
A2+u2 (cl+c2t)zbl+czs =

| 1£(t,u)-£(s,u) | |=]]

|c2k| u2 |c2k|
= 2 l| 2 2|| |S—t| é 2 |S_tl
cl AT+u c1

which shows that f satisfies the condition (iii)., Finally, by using

(VII-12) for any u,v € LZ(O,l)

(£(t,w)-£(t,v),u=v); = == [ (55 - ——,)a(u-v)dx <

k 1 2 2
<KL v (2 = ko ] ] |2
1 72
k 1 . . . + sup ..
where k(t) = |—J ———— is a continuous function on R" with k(t)=
by cl+c2t £20

= = kx . It follows by applying theorem VI-15 that if E%%%T <8
then all the results stated above are valid. Since in this particular
case, f(t,0) = 0, which implies that the null solution is asymptotically
stable,

In the examples above, we assumed that the boundary conditions
were u(t,0)=u(t,1)=0. In the case of non-zero boundary conditions, a
suitable transformation of the unknown function can reduce these condi-
tions into zero boundary conditions without affecting the existence or

stability of the original system. The following example gives such an

illustration.
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Example VII-4, Consider the same problem as in example VII-3

except with the boundary conditions replaced by
u(t,0)=ho(t) and u(t,l)=hl(t) (t 2 0) (VII-15)

where ho and h, are two given continuously differentiable functions of

1
t >0, On setting

v(t,X) = u(t,x) - (1-x)h_(t) -xh,(t) (t > 0) (VII-16)

equation (VII-13) is reduced to

2
v _ 3V ov - '
T a(x) — + b(x) >t c(x)v + fl(t,v) (VII-13)

90X
with the boundary conditions v(t,0)=v(t,1)=0 where

fl(t,v) = f(t’vl) - (1—X)hé(t)—xhi(t)+b(x)(hl(t)—ho(t)) +

+ c(x)(xhl(x) + (1—x)ho(t)) (Vii-17)

with vl(t,x)=v(t,x)+(1-x)ho(t)+xhl(t). Suppose that f1 satisfies all

the conditions in theorem VI-15, then for any two initial elements vl(O,X)
and v2(0,x) e V(A) theorem VI-15 implies that there exists two solutions
vl(t,X) and vz(t,x), respectively, iuch that

- [ (B-k(s))ds
vy (e, )=vy (e, ) || s e © [ 1v, €0, %)=v,(0,%) ||

where M > 1, B is given in (VII-9) and k(t) is given in (VII-14) with
f replaced by fl. By the relation (VII-16)
ul(t,x)-u2(t,x)=v1(t,x)—v2(t,x) (t 2 0, x e [0,1]),

it follows that

t
-/ (8-k(s))ds

oy (6,00, (6,0 || 5 M e o [ oy 0,00-1, 0,5 ||

A

which shows that the existence, uniqueness and stability of a solution
of the transformed system with homogeneous boundary condtions implies

the same property of a solution of the original system with non-homogeneous

156




boundary conditions, Hence the investigation of the equation (VII- 13) with
the non-homogeneous boundary conditions (VII-15) is reduced to the one

with homogeneous boundary conditions by taking the transformed function

f1 as the given nonlinear function.

It is to be noted that if an equilibrium solution Vo exists for
the transformed equation, it does not, in general, imply the existence of
an equilibrium solution u, of the original equation. In fact, if ho(t)
and hl(t) are not both constant no equilibrium solution of the original
system can exist. (In physical problems, this type of boundary condi-
tions often generates periodic solutions).

The above examples are given in the one-dimensional space which
serve as an illustration of some needed technique in formulating linear
operators in a Hilbert space from formal partial differential operators
and which give an application of some of the results developed for
operational differential eaquations to partial differential equations,
Following the same idea as in the one-dimensional case, the extension
of the above results to more general n-dimensional space-dependent
partial differential operators bears no difficulty. For the sake
of simplicity, we limit our discussion to second order partial differ-
ential equations which occur often in physical problems,

Example VII-5, Consider the second order linear differential

equations of the form

n
du _ 9 du _
T .Z' v (aij(x) 5;:) + ¢(X)u X e (VII-18)
i,j=1 i J

with the boundary conditions

u(t,x')=0 x' € 3 Q t>0 (VII-19)

where X=(x,,Xx +,X ), St is a bounded open subset of the Euclidean
1 ' n’?

2,..

space R" with boundary 3@ which is a smooth surface and no

point in 3 Q is interior to 2, the closure of . Assume
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that aij(x) = aji(x) (i,3=1,2,...,n) and together with c(X) are

infinitely differentiable real-valued functions in a domain Qo which

contains §¢ and that there exists a positive constant o such that

n n
2 n
Z aij(x)gigj; o .z £y X e, EeR,. (VII-20)
i,j=1 i=1
By definition VII-2, the operator
B 3 9
L= ] = (a5 (0 )t e
i,j=1 i ]

is an elliptic partial differential operator in Q, since under the
assumption (VII-20)
t n
(-1) ) a,,(x) 5.6, # 0, XeQ, EeR, £# 0.
L ij 17j o
i,j=1
In fact, if the operator L satisfies the condition (VII-20), it 1s said

to be strongly elliptic. It is easily seen by definition that the operator

L is self-adjoint i.e., L=L*, Let T be the operator in LZ(Q) defined by
D(T) = {u e CT(@)jux')=0, x' € 3 Q)
Tu=Lu ue D(T),

and let A be the closure of T. By the corollary of theorem VII-1, A

is self-adjoint. For any u € U(T), integration by parts ylelds

2 3 3 2
(u,Tu) = [uTudx = [ u = (a,.(X) =— ) + c(X)u"]dx
/ I i§j=1 ASTEZR T

I E du du 2
= - [ a,. (X)) — — = c(x) u'ldx
Q i,9=1 ij 3 X4 axj

X=
where d dxldx2

known inequality [24]

---dxn. By the assumption (VII-20) and using the well

S du, 2 2
[ ] Gpiaxzy [ u® ax (VII-21)
Qi=1 1 Q
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where y is a positive real number, we obtain

n
(u,Tu) < ~f [a ] (-2%)2 - c(x) u’lax <-f (ay - c())u’ dx
T i=1 i Q
2 2
< =Gy = e ul 1 = =6 [ul|
_ max o . -
where C = xeB c(x) and B=ay c . Hence, T is dissipative if R=0

and is strictly dissipative if 8>0, The dissipativity and strict
dissipativity of A follow from the dissipativity and strict dissipativity,
respectively, of T as has been shown in example VII-1 since A is the
closure of T. Therefore, A satisfies all the hypotheses in theorem V-16,
To summarize, we can state the following theorem by applying theorem

V-16 with £

0.

Theorem VII-3, Assume that all the real-valued functions aij(x)=aji(x)
(1,3=1,2,+++,n) and c(X) in equation (VII-18) are infinitely differentiable
in a domain Qo containing !, the closure of {, where { is a bounded open
set in R" whose boundary 3Q is a smooth surface and no point of 3 is

interior to £. If the condition (VII-20) is satisfied and if
B =ay =, c(X) >0 (VII-22)

where a is given in (VII-20) and vy is given in (VII-21), then for any
UO(X) e D(A) there exists a unique solution u(t,X) to (VII-18) strongly
continuous in t with respect to theI,z(Q) norm with u(O,x)=uo(x). More~
over, the null solution is stable for B=0 and is asmyptotically stable
if 8 > 0 and in the later case the null solution is the only equilibrium
solution. The stability region is U(A) which, in some sense, can be
extended to the whole space LZ(Q).

It is seen from the above theorem that the major conditions imposed
on the coefficients of the operator L are conditions (VII-20) and (VII-22),

Notice that if c(X) is a non-positive function, then (VII-22) is auto-
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matically satisfied., As a special form of (VII-18) we consider the

equation
n
au = 9 Jdu - [
s izl _3"1 (a; (%) --axi) + e(xX) u XeQ (VII-18)

with the boundary conditions (VII-19). The following theorem is an

immediate consequence of theorem VII-14,

Theorem VII-4. Assume that the real-valued functions ai(x)
(1=1,2,¢++,n) and c(X) in equation (V1I-18)"' are infinitely differen-
tiable in a domain Qo containing Q where @ is a bounded open set in
R" whose boundary 30 is sufficiently smooth. 1If, in addition, ai(x)
is positive for each i and c(X) is non-positive then all the results
in theorem VII-4 hold.

Proof, Consider (VII-18)' as a special form of (VII-18) with
aij(x)=ai(x) for i=j and aij(x)=0 for i#j. Then the condition (VII-20)

is satisfied since by hypothesis o =1;i;n Xed

ai(x))>0 which implies

n

2
E .
ih3=1 !

I e~113

n
2

The condition (VII-22) follows from the non-positivity of c(X). Hence

the results follow by applying theorem VII-4.

As an example of the above theorem, consider the equation
2
— = A u-cu (c real)

where A is the Laplacien operator in Qc:R3 with 3Q sufficiently smooth.
Then all the conditions in the above theorem are fulfilled since in this
case ai(x) = 1 for each i and c(Xx) = —c2.

Just as in the case of one-dimensional space case, semi~linear

equations of the form
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n

du 2 3u
5t~ z. 57, (a3 g3 )+ e(Xu + £(t,u) X e Q (VII-23)
i,j=1 1 3

with the boundary conditions

ult,x) |.o = h(t,x") x' € 3 Q (VI1-24)

o

A . + 2 2
can similarly be treated where f is a function on R x L7(f) to L7(Q).
For the sake of application, we state a theorem which is a direct
consequence of theorems VI-14 and VII-4.

Theorem VII=5. Suppose that the semi-linear equation (VII-23)

with the boundary conditions

u(t,x') =0 x' e 3 Q (V1ii-24)"'
possesses the same linear part as given in theorem VII-4, If for each
t > 0, £ is uniformly Lipschitz continuous in u with Lipschitz constant

k(t) where k(t) is a positive continuous function on R+ satisfying

sup

>0 k(t) < B with B given by (VII-22); and if for each u ¢ V(A), f is

uniformly Lipschitz continuous in t with Lipschitz constant g(llu]|)
where g is a positive non-drecreasing function on R%. Then

(a) For any uo(x) e D(A) there exists a unique solution of
(VII-23) with u(O,X)=uo(x).

(b) An equilibrium solution (or a periodic solution), if it

su . \
t>8 k(t)=B; and is asymptotically stable if :;8 k(t)<g.

exists, is stable if
(c) A stability region of the equilibrium solution is D(A)
which can be extended, in some sense, to the whole space L2(Q).
Remarks. (a) The conditions of uniform Lipschitz continuity
imposed on f can be weakened by assuming that f satisfies the conditions
(1), (i) (or (ii)') and (iii) listed in section C of Chapter vi. (b)

The continuity condition on k(t) can be weakened to allow discontinuous
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at a finite number of points on Rt with k(t) properly defined at the
points of discontinuity (see the remarks following theorem VI-7).

Example VII-6. As an example of the above theorem, comsider

the partial differential equation
2

3%-: Au - C2u + = gu (C%A%cl,cz > 0) (VI1I-25)
(A"+u )(cl+c2t)

with the boundary conditions

u(t,x') = 0 x'e 3 0
where A is the Laplacian operator in a bounded open set & in R3 and
u=u(t,X) with x=(xl,x2,x3). The coefficients of A are aij(x)=éi’j,
the Kronecker delta, which implies that the condition (VII-20) is

satisfied with o = 1 since

) P
a,.(X) £.8.= E,
1,j=1 1 173 44 1

Since c(x) = -c2 < 0, the condition (VII-22) is satisfied. Hence
all the hypotheses in theorem VII-4 are fullfilled with B=ytcZ. It

is easily shown that for any u e D(A) and s,t > 0 (see example VII-3)
e k|

2

1

which shows that f is uniformly Lipschitz continuous in t with

[1£Ce,u)-£(s,w) || <

|s-t]
c

c
g(]|ul )= g . By using the relation (VII-12), for each t > 0

€1
2,2 2
k A (u=v")
[[£Ce,wW-£(e, W] = | ] | =
’ ’ cptet’ T Zi?) 0 2v?)
2 2
k A (wtv) 2 1/2
= |..___._| (u—V) dx) <
c te,t : (A2+u2)2(x2+v2)2
2

k) 1 2 1/2 k
lga;qiﬁrﬂlng ( é (u-v)“dx)) = ‘3732132371 | u=v]]|
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which implies that f is uniformly Lipschitz continuous with Lipschitz

constant

k) = e

sup

Hence if t;O

k(t) = |k/x cll < B, all the results in theorem VII-6 follow.
In this particular case, f£(t,0)=0 it follows that the null solution is
the only equilibrium solution and is asymptotically stable,

In case the boundary conditions are given by (VII-24) where
the function h(t,Xx') is a continuously differentiable function of t

on Rt and twice continuously differentiable in X on all the (n-1)-dimen-

sional subspace of &. On setting

v(t,x) = u(t,x) ~h(t,x") Xxe x'edQ,
equation (VII-23) reduced to
T
a_"= Z L (a, (x) T tc() v+ £(ev) (xe ) (VII-23)'
i,j i j

with the boundary conditions v(t,x') = 0 (x' e 3 Q) where

n
£(E,) = £(e,vi) + ) T (3, (0 %%j) * c(on - 2 (VII-26)

i j=1 1 3
which is a known function since both f and h are given functioms. It
follows that the nonhomogeneous boundary conditions can be reduced to
the homogeneous boundary conditions as for the one-dimensional case from
which theorem VII-6 may be used for the existence and stability of a
solution. Knowing the property of the solution v(t,X) in (ViI-23)"', the
property of u(t,x) of (VII-23) with boundary conditions (VII-24) can

be deduced.
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VIII. CONCLUSIONS

A. The Objective of the Research

The objective of this dissertation is to establish some
criteria for the stability and the existence and uniqueness of
solutions for some linear or nonlinear, time-invariant or time-
varying operational differential equations (i.e., equations of
evolution) from which stability criteria for the corresponding
type of partial differential equations can be deduced. 1In the
case.of linear time~invariant differential equation, a Lyapunov
stability theory for this type of equations in a real Banach space
is established. By using the linear semi-group theory and by the
introduction of semi-scalar product, the existence of a Lyapunov
functional is shown. In addition, necessary and sufficient condi-
tions for the generation of an equibounded or negative semi~group are
obtained from which the existence and stability of a solution can
be ensured.

In parallel to the linear semi-group theory, the introduction
of nonlinear semi-group theory enables the extension of linear differ-
ential equations to nonlinear operational differential equations., A
stability theory as well as the existence and uniqueness theory for
nonlinear differential equations in a complex Hilbert space are estab-
lished. Moreover, by introducing an equivalent inner product, the
same results hold in an equivalent Hilbert space. This fact makes
possible the construction of a Lyapunov functional through a sesqui-
linear functional which under suitable conditions defines an equivalent

inner product and from which a stability criteria is obtained. In the
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special case of semi-linear differential equations, the knowh results
on the linear part simplifies the criteria on a general nonlinear opera-
tor. Upon imposing some additional conditions on the nonlinear part
which is an everywhere defined function, stability and existence of a
solution are guaranteed. This type of equation is particularly useful
for some physical problems.

The development of the nonlinear time-invariant differential

equation is further extended to a more general tvpe of nonlinear time-

varying operational differential equation. Criteria for the existence,
uniqueness, stability and in particular, asymptotic stability of a
solution, including the stability region, are obtained. The invariance
of the existence and stability property of this type of equation in two
equivalent Hilbert spaces is also proved. Particular attention has been
paid to the nonlinear non-stationary operational differential equation,
Some special cases of this type of equation possess many possibilities for
applications to partial differential equations.

In order to apply the results obtained for the above mentioned
type of operational differential equations to partial differential equa-
tions, some second order stationary and nonstationary equations in one-
dimensional and in n-dimensional spaces are considered. These applications
not only yield results on the type of partial differential equations under
consideration but also illustrate some steps in the formulation of a linear
operator in a Hilbert space from a formal partial differential operator.
These steps may be needed in solving more general partial differential equa-
tions. In the following section, a brief description of the main results

in this research are given.
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B. The Main Results

1. The Existence of a Lyapunov Functional

The linear time-invariant operational differential equations
are investigated in Chapter IV. Through the use of an equivalent
semi-scalar product, the existence of a Lyapunov functional in a Banach
space is proved in theorems IV-7 and IV-8; and in terms of this Lyapunov
functional, necessary and sufficient conditions on A to generate an
equibounded and negative semi~group are established in theorems IV-11l
and IV-12 respectively. With these additional results, the stability
study of the linear time-invariant equations by using semi-group or
group theory in a Banach space or a Hilbert space is (in a sense) com~
pleted, 1In addition to the above results, some interesting properties

of semi~scalar product in terms of a semi-group are given in theorems

AIV-9 and IV-10, the proofs of which are based on an useful lemma (lemma

IV-5) which is proved through the construction of a continuous linear
functional,
2. Nonlinear Time-Invariant Operational Differential Equations

Linear time-invariant differential equations have been extended
in Chapter V to nonlinear differential equations with the underlying
space a complex Hilbert space. By introducing the concept of nonlinear
semi-groups, stability criteria in terms of the infinitesimal generator
of a nonlinear contraction semi-group are given in theorem V-2 and is
extended to theorem V-3 for asymptotic stability, The proof of theorem
V-3 is based on a very useful lemma which is shown as lemma V-5. These
two theorems are fundamental for the development of stability theory.

Moreover, the semi-group on V(A) generated by A in theorems V-2 and V-3
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are extended into the closure of D(A) as is shown in lemma V-3. The
inner product with respect to which the nonlinear operator A is dissipa-
tive required in theorem V-2 can be replaced by an equivalent inner
product which is shown in theorem V-4, In this case, the semi-group
generated by A is not necessarily contractive in the original space.
However, from the stability point of view, there is no loss whatsoever
of the stability property. This fact enables one to define a Lyapunov
functional through a sesquilinear functional so that stability property
can be determined by the construction of a Lyapunov functional, These
results are obtained in theorems V-7 to V-9. In addition to the above
results which are directly related to stability theory, lemma V-6, lemma
V-10 and its corollary all have their own values. Moreover, theorem V-6
gives the necessary and sufficient conditions for the existence of an
inner product equivalent to the given inmner product of a complex Hilbert
space. It should be remarked that theorem V-5 is an alternative form
of theorems V-2 and V-3.

As a special case, the semi-linear equation is discussed with
the underlying space a real Hilbert space. If the linear part is the
infinitesimal generator of a semi-group of class C_, then the existence,
uniqueness, stability or asymptotic stability of a solution are established
in theorems V-11, V-12 and their corollaries. Moreover, under some weaker
conditions than those required in theorem V-12, the uniqueness of an equili-
brium solution is established in theorem V-13 and a special case of the
null solution is given in its corollary. This theorem is contributed in
a large part by Dr, Vogt during the discussion between him and the author.
In case the linear part is a closed operator, a general theorem for the

existence, uniqueness and stability property is established in theorem V-15,
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and in the special case of a self-adjoint operator the results are
given in theorem V-16. Finally, theorem V-17 shows that theorem V-16
remains true if the inner product of H is replaced by an equivalent
inner product.
3. Nonlinear Time-Varying Operational Differential Equations

The nonlinear time-invariant differential equations are further

r VI to the nonlinear time~varying differential

extended in Chapt
equations. In parallel to the development of Chapter V, a stability
criterion for the general equations of evolution is established in
theorem VI-2. Through the use of lemma VI-3, theorem VI-2 is extended
to an equivalent Hilbert space as is shown in theorems VI-3 and VI-4
for the stability and asymptotic stability resepctively. By defining
a Lyapunov functional through a sesquilinear functional, theorems
VI-3 and VI-4 are, in fact, equivalent to theorem VI-5. Additional
properties are stated as corollaries 1 and 2.
An important special form of nonlinear time-varying equations
is the nonlinear nonstationary differential equation which is also an
extension of the nonlinear equation discussed in Chapter V, Theorems
VI-6 and VI-7, which are very useful to the applications of concrete
nonlinear partial differential equations, have established general criteria
for the stability and asymptotic stability, respectively, of a solution.
Another special form of the nonlinear time-varying equations is
the semi-linear equations. In the general case where the linear part
is a time-varying unbounded operator, criteria for the stability and asymp-
totic stability of a solution are given in theorems VI~8 and VI-9 respect-

ively. In case the linear part is time-invariant and if it is the

infinitesimal generator of a semi~group of class Co’ theorems VI-10 and VI-11
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give conditions for the existence, uniqueness and stability or asymptotic
stability, respectively, of a solution. Theorem VI-12 shows the unique-
ness of an equilibrium solution; if it is a closed unbounded linear operator,
a general theorem is shown in theorem VI-13; when it is a self-adjoint
operator either in the original Hilbert space H or in an equivalent Hilbert
space Hl, conditions imposed on it turn out to be particularly simple,
and these results are shown in theorems VI-14 and VI-15 which are very
useful for the application of a class of partial differential equations.
Finally, if the linear part is a bounded operator on H, the semi-linear
equations is reduced to an ordinary differential equation. Results on this
type of equations are given in theorems VI-16 to VI-19 which are direct
consequences of the semi-linear equation.,
4, Applications

Applications of the results developed for operational differential
equations to partial differential equations are given in Chapter VII in
which stability criteria for a class of second order partial differential
equations are established and are given in theorems VII-2 through VII-6.
These applications and special examples also illustrate some steps for
solving the stability problem of certain partial differential equations

through the use of the results f or operational differential equations.

C. Some Suggested Further Research
The stability theory developed in this research can be extended in
two broader directions, namely; theoretical extensions to some more general
function spaces such as Banach space on the one hand, and applications to
the class of nonlinear partial differential equations which can be reduced

to the form of operational differential equations on the other, As it has
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been shown in Chapter IV, that the stability criteria of linear time-
invariant operational differential equations in Hilbert spaces can be
extended to Banach spaces by the introduction of semi-scalar product,
This suggests that through the use of semi-scalar product it might be
possible to extend the stability and existence theory for nonlinear
operational differential equations from Hilbert spaces to Banach spaces.
It is believed that this extension is possible for some class of Banach
spaces which are not Hilbert spaces. On the other hand, the results
obtained for the operational differential equations can be used for a
large class of nonlinear partial differential equations which are not
limited to semi-linear equations. The formulation of a nonlinear operator
in a suitable Hilbert space from a given nonlinear partial differential
operator and the associated abstract operator possessing the desired
property both need further investigation. One of the immediate exten-
sions along this line is the formulation of a nonlinear partial differ-
ential operator of elliptic type as a nonlinear operator in some suitable
function spaces such that this nonlinear operator has the required pro-
perty to ensure the stability of a solution of the parabolic-elliptic
partial differential equations. Moreover, applications to nonlinear wave

equations and to Schrodinger equations also need additional attention.
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